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Abstract— This article describes an investigation into the free vibration of double-walled carbon
nanotubes (DWCNTs) using a nonlocal elastic shell model. Eringen’s nonlocal elasticity is
implemented to incorporate the scale effect into the Donnell shell model. Also, the van der Waals
interaction between the inner and outer nanotubes is taken into account. A new numerical solution
method from incorporating the radial point interpolation approximation within the framework of
the generalized differential quadrature (GDQ) method is developed to solve the problem.
DWCNTSs with arbitrary layerwise boundary conditions are considered in this paper. It is shown
that applying the local Donnell shell model leads to overestimated results and one must recourse to
the nonlocal version to reduce the relative error. Also, this work reveals that in contrast to the
beam model, the present nonlocal elastic shell model is capable of predicting some new non-
coaxial inter-tube resonances in studying the vibrational response of DWCNTs.

Keywords— Double-walled carbon nanotube, radial point interpolation method, differential quadrature method, layerwise
boundary conditions

1. INTRODUCTION

Ever since carbon nanotubes (CNTs) were discovered by lijima at the NEC laboratory in Tsukuba, Japan
[1], extensive theoretical and experimental studies have been conducted on these novel materials [2].
DWCNTs as the special cases of multi-walled CNTs can be made in quantitative amounts from the chains
of fullerenes generated inside single-walled CNTs [3]. In recent years, DWCNTs have drawn a great deal
of attention from the scientific community due to their amazing mechanical, optical and chemical
properties.

It is generally accepted that atomistic modeling of nanostructures is very time consuming.
Accordingly, it is advantageous to develop continuum models for the analysis of nanostructures due to
their computational efficiency. Since the conventional continuum mechanics is scale free, great attempts
have recently been devoted to the enhancement of classical continuum models in order to better
accommodate the results from molecular dynamics (MD) simulations. In the most commonly used size-
dependant continuum theory, nonlocal continuum theory, developed by Eringen [4, 5], the scale effect is
simply introduced into the constitutive equations as a material parameter.

Recently, the vibration analysis of CNTs has been the subject of numerous studies based on both
local and nonlocal models using beam and shell theories [6-17]. For example, Ansari et al. [9] studied the
free vibration of DWCNTs based on the nonlocal Donnell shell model using an analytical solution
method. They also employed the MD simulations in order to calibrate the nonlocal parameter used in their
nonlocal model.
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For a DWCNT, different combinations of layerwise boundary conditions can be considered. In this
respect, Xu et al. [7] stated that: “The relevance of the existing model in which both tubes have the same
boundary conditions for the vibration of double-walled CNTs is questionable”. Therefore, developing
powerful numerical solution methods capable of treating layerwise boundary conditions in a DWCNT can
play an important role in the advancement of computational nanomechanics. Hence, the main aim of the
current work is to extend the study reported in [9] on DWCNTs with the same boundary conditions for the
inner and outer tubes to DWCNTs with layerwise boundary conditions. To this end, a novel numerical
method termed as RPIDQ is developed within the framework of hybrid radial point interpolation [18] and
differential quadrature method [19]. The effectiveness of the present model is assessed by MD simulation
as a benchmark of good accuracy. In addition, this study provides a comparison between the beam and
shell models in predicting the frequencies of DWCNTSs. To accomplish this goal, an explicit formula is
also derived for the nonlocal frequencies of DWCNTSs based on the beam model. Some new inter-tube
resonant frequencies and the related non-coaxial vibrational modes are identified in this work as a result of
incorporating circumferential modes into the shell model.

2. MODELING

In the theory of nonlocal elasticity, unlike the conventional continuum mechanics, the stress at a point is
considered to be a functional of the strain field at all points in the body. To bring the nonlocality into
formulation, the Eringen nonlocal constitutive equation is employed as [5]

(1-(eo@)?VHo =1t (1)

here eya stands for the nonlocal parameter which leads to consideration of the scale effect and V2 is the
Laplacian operator; t is the macroscopic stress tensor at a point. The stress tensor is related to strain by
generalized Hooke’s law as

t=3S:e ()
where § is the fourth order elasticity tensor and ‘:’ denotes the double dot product. Hooke’s law for the

stress and strain relation is given by
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where E,G and v are Young’s modulus, shear modulus and Poisson’s ratio of the material, respectively.
Consider an elastic cylindrical shell with radius R, length L and thickness h for each tube of a DWCNT
(see Fig. 1). There are different theories for cylindrical shells such as Flugge’s theory [20, 21] or
Donnell’s theory [22]. In Donnell’s shell theory, the shear and rotary inertia effects are taken into account.
Thus, it seems to be suitable for the vibration analysis of cylindrical shells. Also, it is frequently used for
the analysis of CNTs due to the relatively accurate results in spite of its theoretical simplicity. Based on
the Donnell shell theory, the three-dimensional displacement components u,, u, and u, in the x, 6 and z
directions respectively, as shown in Fig. 1, are assumed to be

u,(x,0,z,t) =ulx,06,t) + z,(x,0,t) (4a)

uy,(x,0,z,t) = v(x,0,t) + 2 (x,0,t) (4b)
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uZ(xl Q,Z, t) = W(xﬂglzl t) (4C)

where u, v,w are mid-surface displacements and v, 4 are mid-surface rotations. The mid-surface strains
and curvature changes are given by
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The strains at any point in the shell thickness can then be written in terms of mid-surface strains and

curvature changes as
Ex = Eox + Zky

(6a)
&g = &pp + Zkg (6b)
Yx6 = Yoxo + Zkxg (60)
Yxz = Yoxz (6d)
Yoz = Yooz + Z(Ya/R) (6e)

Using Egs. (3) to (6) the stress and moment resultants can be given as follows
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where D is the bending rigidity. The governing equations are
ONyx ON, - 1

R )
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in which [Iy, I, I;] = [*,p[1,2 2%]dz are the inertia terms. Also, p denotes the pressure exerted on the ith

tube through the vdW fnteraction forces [9]. Eqgs. (8) are multiplied by (1 — (e,a)?V?). The left hand side
of the resulting equations is given by Egs. (7). Thus, for the ith tube of a DWCNT, by the use of Egs. (7),
Egs. (8) can be stated in terms of the five field variables (u®,v®, W(i),lp,(cl), 1,[1(51), (i=12))as
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where the differential operators are given in Appendix A.

CNT simulated as a thin shell

Fig. 1. Schematic of a CNT treated as an elastic shell
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For any tube of a DWCNT, different boundary conditions may be considered by the combination of
simply-supported (S), clamped (C) and free (F) edges. For example:
Simply-supported-Simply-supported (SS)

v=w=yYyg=M,=N, =0, atedgesx =0,x =1L (10)
Clamped-Clamped (CC)
u=v=w=19, =19y =0, atedgesx =0,x =1L (11)
Clamped-Free (CF)
u=v=w=1y, =1y =0, atedgex =0
N, =Ny =M, =My =0Q,=0, atedgex =1 (12)

3. SOLUTION
a) Radial point interpolation method

In the radial point interpolation method (RPIM), the trial function is given by [18§]

- (13a)

ul(x,x9) = z Ry(x) as(xq)
ai (xq) = [ay, az, "+, an] (13b)
RZ(X) = [Rl (x), R2 (x), L Rn(x)] (13C)

where n is the number of nodes in the neighborhood of a given point x,, Rs(x) are radial basis functions in
the space coordinates x” and as(x,) is the coefficient corresponding to the given point x,. The vector of
coefficients a can be determined by enforcing Eq. (13) to pass through all the n nodes within the support
domain of point x,

ug = RT(x)a (s=12,..,n) (14)
or in matrix form

US :Rsa (15)

in which Ul = [uy, uy, ..., u,] and Ry is called the moment matrix given by

R

TRi() Ro(r) - Ry(r)
— R1(_x2) Rz(_xz) Rn(xz) (16)
Rl(.xn) RZ(.xn) Rn(‘xn)
From Eq. (15), one can have
a = R;'Us (17)

Substituting Eq. (17) into Eq. (13) gives
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ul(x) = Yiog s () ug
in which

¢s(x) = R{ ()R

The Ith derivative of the RPIM shape functions is readily obtained by

pO ) = [RTO)] R

b) RPIDQ analog of field equations

The modal displacement functions for the ith tube are taken as
u®(x,8) = UD(x) cos(mb) e/t
vO(x,0) = VO (x) sin(mo) e/ot
w®(x,0) = WO (x) cos(md) e/t
PO (x,0) = ¥ (x) cos(mb) eset

wéi) (x,0) = 'u"a(i) (x) sin(m#) e/®t

(18)

(19)

(20)

(21a)
(21b)
21¢)
(21d)

(21e)

Substituting these modal functions into the field equations of the DWCNT and discretizing them at

the rth given point using the RPIDQ approximation give

NgE
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n

D (900 + 120 + K + 100 4 10%)

s=1 n n
= —w?(1 - (e,a)*V?) (11 Z ¢rsVs(l) +1; Z ¢rslpe(:)>
s=1 s=1

where the algebraic operators are given in Appendix A.

(22¢)

¢) RPIDQ analog of boundary conditions

By the RPIDQ approximation, the discrete counterparts of the equations governed by the boundary
conditions become
Simply-supported-simply-supported (SS)

n

i BrsVo = ) rsW, = Z brso,

s=1 s=1 rf=1 n (23)

0. @) m, 1 @
0; ¢rs Us + ¢rsv R_Vs R_ ¢rs lsz + ¢rsv ‘Pes
s=1 s=1 ! !
=0

at edges x = O L
Clamped-Clamped (CC)

i Brsls = ) Grsle = D braWo = ) B, = > bWy, = 0 atedgesx=0L
s=1 = —

n n n n n
D brlle= Y Bl = ) b= > dri¥h = ) bWy, =0 at edges x = 0,1
s=1

n
1
> £§>Us+2¢rsv(R Vot We) =0 qursu +Z¢><")V -0 qu(")s" +V—Z brs¥e,
i
Z ¢rslluxs + Z ¢r(§)l‘U65 =0; Z d)r(?w + z Ors'ts X

=0 at edge x=0
(r=1n) (25)
d) Derivation of eigenvalue problem

Rearranging the quadrature analogs of field equations and the boundary conditions within the

framework of a generalized eigenvalue problem leads to

{&z} a {szgéd} (26)
xsmyx(zxsn) \Ob) 2xsn) 0 (2x5n)

where the subscripts b and d refer to the boundary and domain grid points, respectively. The displacement
vectors {84} and {6} are defined by

[Kdd Kap
Kpa  Kpp

5 =[x x@]" P =[0,9 v,® w,® @ ¥@]", (=12 27)
and
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i . . . . T
Sp = [Xlgﬂ X,SZ)]T X}gl) — [Ub(z) Vb(l) Wb(l) ‘Pff; ng); ,(i=12) (28)
Using the condensation technique [23], Eq. (26) can be transformed into the standard form of

Kg™' (Kaa — KapKpp Kpa) 84 — 0?64 = 0 (29)

from which the eigenvalues (w) can be extracted. The smallest value of w is the fundamental frequency.

4. RESULTS AND DISCUSSION

The constant values needed for numerical evaluations are E=1TPa, h = 0.34nm , p = 2.3 g/cm3and
v = 0.3. The configuration of layerwise boundary conditions, for example, will be indicated by (SS/CC),
where the pair of SS corresponds to the inner tube and the pair of CC corresponds to the outer tube. Also,
for a given inter-tube mode number p, for convenience, the frequency associated with the nth axial and
mth circumferential modes will be denoted by wf (m). For all the calculations performed in this work, the
following radial basis function which is one of the commonest forms with adjustable parameters is
employed [18]
R;(x) = exp [—aC (x;—fl)z] , A, = cd, (30)
To define the support domain at a given point, the dimension of the support domain d,; can be
determined by d; = a,d., where «, is the dimensionless size of the support domain and d. is a
characteristic length that relates to the nodal spacing near the point at x;. For uniformly distributed nodes,
d. is the distance between two neighboring nodes. For non-uniformly distributed nodes, alternatively, d,
can be characterized as an “average” nodal spacing in the support domain of x;. The physical meaning of
the dimensionless size of the support domain oy is the factor of the average nodal spacing. In one-
dimensional cases, an average value of d, can be computed by d, = Dy/(np, — 1), in which D is an
estimated support domain, dg, at the point x;. It is worth mentioning that D, should be a reasonably good
estimate of d; and np_ is the number of nodes that are covered by a known domain with the dimension of
D,. The first three resonant frequencies of a SS/SS DWCNT for up to n = 19 regular and irregular grid
sampling points are listed in Table 1. This table indicates quite obviously the converging trend of the
present numerical solution with increasing number of sampling points for both given radii of support

domain.
Table 1. Convergence of resonant frequencies (THz) of a SS/SS DWCNT
(R, =85nm,L/R, =5,p =134g/cm3,e4a = 0)
Number of wl(4) wi(5) wl(6)

nodes Regular Irregular Regular Irregular Regular Irregular
9 0.1335 0.1338 0.2644 0.2665 0.4096 0.4462
11 0.1333 0.1334 0.2640 0.2642 0.4017 0.3962
. =3 13 0.1330 0.1331 0.2637 0.2646 0.4002 0.4011
s 15 0.1328 0.1330 0.2635 0.2639 0.3998 0.4005
17 0.1328 0.1328 0.2634 0.2635 0.3997 0.3999
19 0.1328 0.1328 0.2634 0.2634 0.3997 0.3997
9 0.1334 0.1335 0.2641 0.2652 0.4050 0.4420
11 0.1332 0.1333 0.2639 0.2640 0.4012 0.4026
a. =4 13 0.1329 0.1330 0.2636 0.2638 0.3999 0.4009
$ 15 0.1328 0.1329 0.2634 0.2637 0.3997 0.4001
17 0.1328 0.1328 0.2634 0.2634 0.3997 0.3998
19 0.1328 0.1328 0.2634 0.2634 0.3997 0.3997
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To validate the solution procedure presented in this work, the results generated are compared with
those of MD simulation reported in [9]. The variation of fundamental frequencies for a SS/SS (5,5) @
(10,10) DWCNT against nanotube aspect ratio is shown in Fig. 2. The nonlocal parameter eya needs to be
calibrated such that the nonlocal shell model is capable of predicting the results of MD simulation. The
calibrated value for eya is 1.15 nm. It is observed that there is a good agreement between the results
obtained from the nonlocal shell model with its adjusted nonlocal parameter and the ones reported in [9].

v ¥ MD simulation [9]
0.9} | == Present Shell Model 1

08

0.7}

06¢

05¢

04F

03F

Fundamental Frequency (THz)

"'

5 10 15 20 25 30 35 40
Aspect Ratio

Fig. 2. Fundamental frequencies from the present shell model and MD simulation [9] for a
(5,5) @ (10,10) DWCNT under SS/SS boundary conditions

To investigate the effects of nonlocal parameter and aspect ratio on the frequencies of DWCNTs, the
variation of nonlocal to local frequency ratio against eya for different values of aspect ratio is illustrated in
Fig. 3. This figure shows that as the nonlocal parameter increases, the frequency obtained for the nonlocal
shell model becomes smaller than that of its local counterpart. It physically means that the small scale
effects in the nonlocal model make DWCNT more flexible. Also, it is observed that the effect of eya is
more pronounced for lower values of aspect ratio. The effect of boundary conditions on the frequency
ratio is also studied in Fig. 4. As shown in this figure, as the nonlocal parameter increases, the difference
between the boundary conditions increases. According to this figure, the significance of the nonlocal
parameter is affected by the type of boundary conditions, so that the nonlocal influence is more prominent
for stiffer boundary conditions.

14
b
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Fig. 3. Variation of frequency ratio versus nonlocal parameter for a SS/CC DWCNT
with different values of aspect ratio (R; = 10 nm)
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Fig. 4. Variation of frequency ratio versus nonlocal parameter for a DWCNTs
with different types of layerwise boundary conditions (L/R; = 10)

Now, a comparison is made between the results generated by the present shell model and the ones
obtained using beam model. To this aim, the results of the present nonlocal Donnell shell model and those
of local beam model reported in [7] and also the ones obtained from the nonlocal beam model given in
Appendix B for SS/SS DWCNTs are presented in Fig. 5. Different boundary conditions including
layerwise end conditions such as FF/CC and SS/CC are considered in these figures. Presented graphically
in Figs. 5a and b are the local and nonlocal (e,a = 0.5 nm) fundamental frequencies of a SS/SS DWCNT
against the length of nanotube, respectively. For the beam model, the frequencies given by Eq. (B.8) are
used in these figures. It can be seen that the fundamental frequency decreases as the length increases.
Furthermore, it is found that the beam model tends to overestimate the frequencies of DWCNT so that the
discrepancy between the beam and shell models becomes more pronounced for DWCNTs of low length
values. Also, it is observed that the nonlocal effect is more prominent in the shell model than that in the
beam model. Figs. 5¢ and d show the fundamental frequencies of DWCNTSs with two different layerwise
boundary conditions, namely FF/CC and SS/CC. These figures also provide a comparison between the
present local Donnell shell model and the local beam model developed in [7]. The difference between
beam and shell models for shorter DWCNTSs can also be seen in these figures similar to that shown in
Figs. 5a and b. Thus, one may conclude that depending on the length of nanotube, the beam model leads to
inaccurate results for vibrations of DWCNTSs. The reason here is that, the beam model does not take the
circumferential mode into account. It should be noted that as the length of nanotube increases, the
frequency curves corresponding to the beam and shell models tend to converge. This reveals that the
sufficiently long DWCNTs behave like a beam.

Figure 6 depicts the vibrational mode shapes of a SS/SS DWCNT for two different inner radii on the
basis of beam model developed in Appendix B. This figure shows two vibrational mode shapes predicted
via the beam model corresponding to coaxial and non-coaxial modes. To show the ability of the shell
model in predicting new inter-tube resonant frequencies and the related non-coaxial vibrational modes,
mode shapes predicted by the shell model are also shown in Fig. 7. As revealed in this figure, further non-
coaxial vibrational modes such as w? and w] for radius R; = 1 nm and w} and wj for radius R, = 2 nm are
predictable. Hence, unlike the beam model which is capable of predicting only two inter-tube vibrational
modes, the application of the present shell model leads to predict further inter-tube vibrational modes and
the associated non-coaxial vibrational modes. Furthermore, non-coaxial vibrational modes may shift to the
ones related to higher circumferential mode numbers as the inner radius of DWCNT is increased.
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5. CONCLUDING REMARKS

The free vibration of DWCNTs with different layerwise boundary conditions was investigated in this
work. To this end, a nonlocal Donnell shell model was developed which accounts for the scale effect. The
set of governing equations were then numerically solved via the radial point interpolation approximation
combined with the GDQ method. Good agreement was observed between the calculated frequencies by
the nonlocal shell model and MD simulation. It was indicated that applying the local Donnell shell model
leads to overestimated results and one must recourse to the nonlocal version to reduce the relative error.
Through comparison between the results generated by the shell model and the ones obtained from the
beam model, it was concluded that the beam model tends to overestimate the resonant frequencies of
DWCNTs as compared to the shell model, due to not incorporating circumferential mode number into the
model. By the present Donnell shell model some new non-coaxial inter-tube resonances of DWCNTSs were
predicted. Additionally, a shift in non-coaxial modes, which is unpredictable by the beam model, is
observed to likely happen when the radius of DWCNTs is varied.
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APPENDIX A
Differential operators:
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APPENDIX B: EXACT SOLUTION FOR THE NONLOCAL BEAM MODEL
w; = W, sin (%) el@t | (i =1,2) (B.1)
o*w 2%w
Ellﬁ + pA;[1 = (epa)?V?] atzl — ¢12[1 = (e0@)?*V?](wy —w,) = 0
a* 82
El 5t + pAa[1 = (e0a)? V2 522 — e [1 = (@) V2] (w, = wy) = 0 B2)
Substituting Eq. (B.1) into Eq. (B.2) gives the following algebraic equations
nmy* Ny 2 Ny 2 Ny 2
<E11 (T) - pAl(UZ [1 - (eoa)z (T) ] - ClZ [1 + (eoa)z (T) ])Wl + CIZ [1 + (eoa)z (T) ]WZ
=0
nimy 4 Ny 2 NIy 2 NIy 2
(EIZ (T) - pAz(Uz [1 - (eoa)z (T) ] - 621 [1 + (eoa)z (T) ])WZ + 621 [1 + (eoa)z (T) :IW]_
=0
(B.3)
(K — w?*M){W} = {0} (B.4)
where
nmy* , (T 2 , (T 2
_ ElL (T) —Cp2 [1 + (epa) (T) ] C12 [1 + (epa) (T) ] (B.5)
NI 2 nmy\4 NI 2
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w={n) o7

The nontrivial solution of (B.4) gives det(K — w?M) = 0. The following explicit formula for the resonant
frequencies of the DWCNT can be obtained as

(B.8)
w = Q K11 My + Myy Ky (Kp2Myy — KyiMp,)? + 4Myy My, Ky o Koy
2 M1 M;,
where
nmy\4 nmy* Ny 2
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» (2] > ()]
+ (e0a)? (T) + (e0a)? (T)
nm- 2 nm- 2 M
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