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Abstract– In this paper, the Hamilton's principle is implemented to derive the coupled partial 
differential equations of motion of composite sandwich beams with viscoelastic core. The 
sandwich beams model is based on the higher order theory for composite sandwich beams with 
viscoelastic core, which regards independent transverse displacements for the face sheets with 
linear variations along the depth of the core. The core Young's modulus and the beam rotary 
inertia effects are also taken into account. Frequency response analysis is examined by applying 
the Galerkin discretization approach on the adimensional equations of motion. The results are 
validated by comparison with the existing literature. An interesting study is managed for the 
frequency response sensitivity analysis to the core shear modulus variation. The novelty of this 
work, besides the study of the fiber angle effects on the frequency response, is finding more 
logical relationships for regarding or discarding the core Young's modulus and the beam rotary 
inertia contributions, during the frequency response analysis of the beam. The results indicate the 
significant role of the core Young's modulus and the beam rotary inertia effects on the frequency 
response of the beam. The outcomes illustrate regarding the core Young's modulus, contribution 
hardens the structure while consideration of the beam rotary inertia softens the structure.            
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1. INTRODUCTION 
 

Composite materials are used frequently in aerospace and marine structures due to their high 
strength/weight ratios and different desirable features achieved by the variation in fiber angles. On the 
other hand, vibration control of structures, i.e. suppression of the vibration amplitude, protects structures 
from experiencing fracture and high strains and stresses in large amplitude vibrations, hence, control of 
the vibration has a significant role in the safety and durability of the structures. Viscoelastic materials are 
employed frequently for passive vibration control. Therefore, study on the dynamic and vibration 
characteristics of composite sandwich beams with viscoelastic core (CSBVC), plays a prominent role in 
research, design and engineering purposes. 

A large number of the previous researches on the sandwich structures have implemented the Mead 
and Markus theory (MMT) assumptions [1] to determine the equations of motion. Shakeri et al. [2] 
studied the dynamic analysis of an axisymmetric cross-ply laminated shallow panel subjected to thermal 
load using the Galerkin discretization approach. Yim et al. [3] examined the damping behavior of 0o 
laminated CSBVC. Their study demonstrated the significant effects of the core thickness and the beam 
length on the loss factors. Pourtakdoust and Fazelzadeh [4] implemented the Galerkin projection approach 
to investigate the effect of structural damping on the chaotic behavior of nonlinear panels. Cai et al. [5] 
presented the frequency response analysis of isotropic beams with a passive constrained layer damping, 
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using the assumed modes method. Zhang and Chen [6] studied the effects of damping of face sheets 
fibers, fiber angles and viscoelastic core position on the loss factors and natural frequencies of CSBVC, 
modeled by ANSYS 7.0. 

To eliminate the shortage of the assumptions of the MMT, Douglas and Yang [7] presented a model 

in which they considered the independent transverse displacements for the face sheets of CSBVC. Frostig 

and Baruch [8] presented a model for linear free vibration analysis of sandwich beams with a flexible core 

based on a general, higher order theory in which the nonlinear displacement distribution through the depth 

of the core was considered. Marur and Kant [9] proposed higher order refined displacement models for the 

free vibration analysis of sandwich beams. Chen and Chan [10] developed a model based on the linear 

variation of the transverse displacement through the depth of sandwich beams with isotropic face sheets 

and viscoelastic core. They used an integral finite element method for the frequency response 

examination. 

For improving the other MMT assumptions, Douglas [11] developed his previous research [7] by 

considering rotary inertia and shear deformation effects of the face sheets. Johnson [12] and Austin [13] 

revealed that the MMT assumptions are only applicable for sandwich beams with weak cores. Arvin et al. 

[14] developed a higher order theory for CSBVC by considering linear variation for the transverse 

displacements of the face sheets through the depth of the beam. They also considered the core Young's 

modulus and rotary inertia effects. Afshin et al. [15] employed the high-order theory of sandwich 

structures for examination of the vibration analysis of composite cylindrical sandwich panels containing a 

viscoelastic core. Damanpack and Khalili [16] investigated the free vibration features of three-layered 

symmetric sandwich beam using dynamic stiffness method, and employing numerical techniques and the 

Wittrick-Williams algorithm. Venkatachalam et al. [17] implemented a semi-analytical finite element 

method to study the effects of an electric field for the electro-rheological fluid material and a magnetic 

field for the magneto-rheological fluid material on the vibration behavior of the mild steel sandwich shaft 

disc system.  

In this paper, the higher order theory for CSBVC, proposed in [14], is implemented for study on the 

frequency response of CSBVC. The model was managed for improving the MMT assumptions for 

sandwich beams. The Hamilton's principle is used to derive the four coupled partial differential equations 

of motion for the upper and lower face sheets transverse and axial motions of a CSBVC carrying an 

external transverse load at its upper face sheet. The non-dimensional parameters are introduced to 

determine the adimensional forms of the equations of motion. The Galerkin discretization approach is 

applied on the non-dimensional equations of motion for frequency response examination. The face sheets 

fiber angle effects, and face sheets and core thicknesses influences on the frequency response are 

investigated. The frequency response sensitivity to the core shear modulus and the fiber angle effects 

variations is also examined.  

 
2. EQUATIONS OF MOTION 

 
A clamped-free sandwich beam with a viscoelastic core and composite face sheets is depicted in Fig. 1. h1, 

h3 and h2 are, respectively, the upper and lower face sheets and the core thicknesses and L is the beam 

length. The x axis is considered along the beam length, while the z axis is considered along the depth of 

the beam, with the origin at the beam root in the core neutral axis. 
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Fig. 1. A schematic of a clamped-free sandwich beam with a viscoelastic 

core and composite face sheets 
 

The formulation is based on the higher order theory, which was addressed firstly for the composite 
sandwich beams in [14]. In agreement with [14], the following assumptions, for improving the MMT 
assumptions deficiencies, are considered here; I- Face sheets have independent transverse displacements 
with linear variation along the core depth, II- Contributions of the core Young's modulus are considered 
in the formulation, III- Isotropic materials are replaced with the composite materials at the face sheets, 
and IV- The beam rotary inertia and longitudinal kinetic energy of the core are included.  

Consideration of the aforementioned assumptions in the formulation delivers the kinetic and strain 
energies [14]. On the other hand, the virtual work, ncW , performed by the external force acted on the 
upper face sheet, ),(1 txf , is given by [18]: 

           
L

nc dxtxwtxfW
0 11 ),(),(   (1) 

where, ),(1 txw is the upper face sheet virtual transverse displacement. In the case of a harmonic tip point 
transverse load we have   tieLxftxf   01 ),(  in which 0f  is the load amplitude and   is the 
excitation circular frequency. Thereafter, employing the Hamilton's principle [18] leads to: 

                     2

1

0][
t

t nc dtWL   (2) 

where, VTL   is the Lagrangian and T  is the kinetic energy of the composite sandwich beam 
introduced in [14]. 321 VVVV   is the strain energy of the composite sandwich beam, in which 1V , 

3V  and 2V  are, respectively, the upper and lower face sheets and the core strain energies denoted in [14]. 
Subsequently, simplifying the Hamilton's principle yields in four coupled partial differential equations of 
motion, for the upper and lower face sheets transverse and axial motions, respectively, as: 
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are, respectively, the modified reduced stiffness coefficients of the upper and lower face 

sheets and ijQ  are the core stiffness coefficients. ii bhA   in which iA  and b  are, respectively, the cross 

section of the ith layer of the beam and the beam width; iii Am  in which im  and i  are, respectively, 

the ith layer mass per unit length and the corresponding density and 12/bhI 3
ii   and iii IJ   are, 

respectively, the ith layer area and mass moments of inertia. In addition, )t,x(w1 , )t,x(u1 , )t,x(w3 , 

and )t,x(u3  are, respectively, the transverse and axial displacements of the neutral axis of the upper and 

lower face sheets. 
 

3. SOLUTION PROCESS 
 
a) Non-dimensionalization of the equations of motion 
 
Due to the generalization of the solution, the following non-dimensional parameters are taken into 
account: 
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11Q  is the real part of 11Q . 

Applying the above mentioned adimensional parameters to the equations of motion, Eqs. (3)-(6), and 
removing the “^” sign, results in four non-dimensionalized equations of motion as: 

FLI  uu  (8) 

where, T
3131 ]u,u,w,w[u  in which superscript T"" denotes the transpose of the corresponding matrix. 

FLI and,, are, respectively, linear inertia and stiffness operators and the external force resultant, which, 
for brevity are not presented in the paper. 
 
b) Galerkin discretization 
 

The frequently employed weighted residual method, called Galerkin discretization approach is 
implemented to solve the equations of motion. The displacement fields are considered as the combination 
of the suitable shape functions as: 
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where )t(w(1)q , )t(w(3)q , )t(u(1)q  and )t(u(3)q  are, respectively, the transverse and axial generalized 
coordinates of the upper and lower face sheets, and )x(w(1)

j , )x(w(3)
j , )x(u(1)

j  and )x(u(3)
j  are the 

jth clamped-free linear normal modes of the corresponding Euler-Bernoulli beam and rod, respectively. 
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Substitution of Eq. (9) into the non-dimensional equations of motion and applying the Galerkin 
procedure [18] yields: 

fqKqM    (10) 

where Tqqqqq ],,,[ u(3)u(1)w(3)w(1) . M  and K  are, respectively, the mass and stiffness matrices and f  is 
the generalized external force resultant vector. The corresponding eigenvalue problem related to M  and 

K  matrices delivers the free vibration features including the natural frequencies, loss factors and linear 
normal modes. The mass and stiffness matrices and the generalized force elements read as: 
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4. RESULTS AND DISCUSSION 
 
The frequency response study is the main tool for damage detection analysis and is a practical implement 

for determination of special dynamics features. Hence, in this section, different scenarios, such as core 

Young's modulus and the rotary inertia effects on the frequency response are examined.  
 
a) Validation 
 

For validation of the results, the natural frequencies are compared with those of [9]. In [9] a quadratic 

distribution for transverse displacement is considered along the depth of the core. The beam length and 

width are, respectively, 36 and 1 in. The other properties are presented in Table 1. The results, in Table 2, 

show that the present results are higher than those of [9]. In agreement with the concluding remarks of [9], 

which is "All higher order models are found to compute frequencies which are numerically higher than 

those of first order theory for the thin beams", the current results are lower than the corresponding results 

of [9]. The discrepancy of the transverse frequencies decreases significantly with increasing the mode 

number (below 10%).  
 

Table 1. Geometric and material properties of isotropic sandwich beam with a flexible core [9] 
 

 Thickness (in) Young's modulus (psi) Shear modulus (psi)  Density )/in(lbs 42  

Upper and Lower  
face sheets 

018.0  107 0 
 61098.250   

Core 5.0  0 12000  6100717.3   
 
Table 2. Flapping and axial natural frequencies in comparison with the corresponding results of [9] 

 
 Flapping frequency  Axial frequency 
Mode number 1 2 3 4 5 1 2 
Current results(Hz) 25.2 174.9 465.0 865.0 1301.4 1688.33 5070.97 
Results from [9] (Hz) 33.7 197.5 505.5 890.5 1321 1648 4941 
Percent of difference  25.3 11.4 8.0 2.9 1.5 2.4 2.6 

 
The current frequency response results are compared with those of a beam with viscoelastic core and 

isotropic face sheets in [5]. In [5], the formulation is based on the MMT assumptions. The assumed mode 

method has been implemented in [5] to determine the frequency response. The material and geometric 

properties are presented in Table 3 in which G* is the core complex shear modulus and N1fo  . The tip 

point of the neutral axis of the sandwich beam is considered as the observing point. The results for two 

core cases, named soft, G*=0.895+1.3067i MPa, and hard, G*=9.89+14.4394i MPa, are depicted in Fig. 2. 

A good agreement in prediction of the natural frequencies is evident. In the soft core case, Fig. 2a, the first 

and second frequencies are predicted less than those of [5], while the third and fourth ones are more than 

those of [5]. The implication is that in the two lowest frequencies the relaxation of the current model 

dominates the contributions of the axial and bending core strain energies, while in the third and fourth 

ones, the core axial and bending strain energies overcome the relaxation of the present model; because the 

relaxation has a softening effect on the stiffness of the structure, while consideration of the core axial and 

bending stiffness has a hardening effect on the structural stiffness. In the hard core case, Fig. 2b, the 

situation is reverse. In the first frequency, the axial and flexural core strain energies dominate the current 

model relaxation; on the contrary, for the other frequencies the inverse contribution is clear. 
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Table 3. Geometric and material properties of the isotropic sandwich beam with viscoelastic core [5] 
 

 Thickness (m) Young's modulus (MPa) Density (kg/m3) Poisson's ratio 

Upper face sheet 3102   49×103 7500 0.3 

Core 3101   )1(2   GE  1000 0.49 

Lower face sheet 3104   70×103 2110 0.3 

 
Fig. 2. Frequency response of a clamped sandwich beam with viscoelastic core and isotropic face sheets, (a)- a soft 
core, G*=(0.895+1.3067i) MPa, and (b)- a hard core, G* =(9.89+14.4394i) MPa. The solid and dashed lines indicate, 
respectively, the current Galerkin approach results and the results of [5] 
 
b) Frequency response analysis  
 

In the frequency response analysis of the composite sandwich beams, graphite-epoxy (T300/5208) is 
considered as the face sheets material. The face sheets and core material properties and the geometric 
properties are introduced, respectively, in Table 4 and Table 5 and N1.0fo  . For more intensive 
examination, four core cases are considered; the core shear modulus is considered 10-1, 100, 101 and 102 
times the reported value in Table 4. The fiber angle study is addressed here. In accordance with the current 
formulation, which is based on the symmetric layup, the fiber angles of the face sheets are taken the same. 
The associated frequency response for different fiber angles is displayed in Figs. 3-6. Figure 3 is 
associated with the weakest core. As expected, increment in the fiber angles has softening effects on the 
beam stiffness, which reduces the natural frequencies and increases the transverse displacement (more 
pronounced in 0o-30o fiber angles) while it seems that increasing the fiber angle more than 75o has no 
significant effect on the corresponding natural frequencies as well as the frequency response. Similar 
qualitative features are depicted in Figs. 4-6 for the other cases. 
 

Table 4. Material properties of the sandwich beam with viscoelastic core and composite face sheets [14] 
 

 Young's modulus Density Poisson's ratio Shear modulus 
 )(

11
MPaE  )(

22
MPaE  )(kg/m3  12

  )(
12

MPaG  

Upper face sheet 141200 9720 1536 0.28 5530 

Core )1(2   GE  970 0.49 110)3.01(037.7   iG  

Lower face sheet 141200 9720 1536 0.28 5530 
 

Table 5. Geometric properties of the composite sandwich beam with viscoelastic core [14] 
 

Beam length Upper face sheet thickness Lower face sheet thickness Core thickness Beam width 
L(m) )(

1
mh  )(

3
mh  )(

2
mh  b(m) 

1 3104   3104   31020   31025   
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Fig. 3. Frequency response of a clamped sandwich beam with viscoelastic core, G*=7.037(1+0.3i)10-2 MPa, and 
composite face sheets, (a)- face sheets angle equal to: 0o, 15o and 30o, and (b)- face sheets angle equal to: 45o, 60o, 
75o and 90o 
 

 
Fig. 4. Frequency response of a clamped sandwich beam with viscoelastic core, G*=7.037(1+0.3i)10-1 MPa, and 
composite face sheets, (a)- face sheets angle equal to: 0o, 15o and 30o, and (b)- face sheets angle equal to: 45o, 60o, 
75o and 90o  

 
Fig. 5. Frequency response of a clamped sandwich beam with viscoelastic core, G*=7.037(1+0.3i)100 MPa, and 
composite face sheets, (a)- face sheets angle equal to: 0o, 15o and 30o, and (b)- face sheets angle equal to: 45o, 60o, 
75o and 90o 

 
Fig. 6. Frequency response of a clamped sandwich beam with viscoelastic core, G*=7.037(1+0.3i)101 MPa, and 
composite face sheets, (a)- face sheets angle equal to: 0o, 15o and 30o, and (b)- face sheets angle equal to: 45o, 60o, 
75o and 90o 
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A more interesting study is carried out on the specialized features of the current assumptions and 

formulation. The two of the more outstanding characteristics of the present formulation are regarding the 

core Young's modulus, which participates in the axial and flexural strain energies of the core and plays a 

hardening role in the structural stiffness, and the beam rotary inertia, which affects the beam kinetic 

energy and softens the structure. The former study is revealed in Figs. 7-9 in which the core shear modulus 

is considered 100, 101, 102 and 103 times the reported value in Table 4. The core thickness is considered, 

respectively, 1, 2 and 3 times the aforementioned value in Table 5 and the face sheets fiber angles are 30o. 

The results demonstrate discarding of the core Young's modulus contributions only has obvious influences 

in the last part, (d), of each figure. On the other hand, the error of the core Young's modulus neglection 

increases with the core thickness increment. 

The implication is that, in part (d) with increasing the core Young's modulus, the core strain energy 

takes magnitudes in comparison with the face sheet strain energy, hence, discarding the core Young's 

modulus causes notable errors. In addition, as it is expected, consideration of the core Young's modulus 

has a hardening effect on the structural stiffness, which is evident in part (d) of each figure. 

The rotary inertia effects are investigated in Fig. 10 for 1, 2, 3 and 5 times the previous face sheets 

thickness value. The face sheets angles and the core shear modulus are considered, respectively, 30o and 

10-1 times the mentioned value in Table 4. By increasing the face sheets thickness, the rotary inertia effect 

grows. On the other hand, Fig. 10d exhibits the softening effects of regarding the rotary inertia 

contributions, which consequently leads to reduction in the natural frequencies. 

For more detailed examination of rotary inertia effects, frequency response for the latter case, 

h1=h3=20·10-3 m, is depicted in Fig. 11 in which the core shear modulus is considered 100, 101, 102 and 103 

times the reported value in Table 4. 
 

 
Fig. 7. Frequency response of a clamped sandwich beam with composite face sheets and viscoelastic core with 
h2=2·10-2 m, (a)- G*=7.037(1+0.3i)10-1 MPa, (b)- G*=7.037(1+0.3i)100 MPa, (c)- G*=7.037(1+0.3i)101 MPa, and 
(d)- G*=7.037(1+0.3i)102 MPa. The solid and dashed lines indicate, respectively, frequency response with and 
without the core Young's modulus effects  
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Fig. 8. Frequency response of a clamped sandwich beam with composite face sheets and viscoelastic core with 
h2=4·10-2 m, (a)- G*=7.037(1+0.3i)10-1 MPa, (b)- G*=7.037(1+0.3i)100 MPa, (c)- G*=7.037(1+0.3i)101 MPa, and 
(d)- G*=7.037(1+0.3i)102 MPa. The solid and dashed lines indicate, respectively, frequency response with and 
without the core Young's modulus effects 
 

 
Fig. 9. Frequency response of a clamped sandwich beam with composite face sheets and viscoelastic core with 
h2=6·10-2 m, (a)- G*=7.037(1+0.3i)10-1 MPa, (b)- G*=7.037(1+0.3i)100 MPa, (c)- G*=7.037(1+0.3i)101 MPa, and 
(d)- G*=7.037(1+0.3i)102 MPa. The solid and dashed lines indicate, respectively, frequency response with and 
without the core Young's modulus effects  
 

The figures demonstrate that core shear modulus increment eliminates the rotary inertia contributions. 
The implication is that by increasing core Young's modulus magnitude, kinetic energy variation with 
respect to strain energy variation is negligible. In this case, the rotary inertia influences can be neglected. 

The core thickness effects on regarding or discarding of rotary inertia effects is presented in Fig. 12. 
The core shear modulus and the core thickness are considered, respectively, 10-1 and 4 times the 
corresponding values, respectively, in Tables 4 and 5. In spite of the previous study on the prominent 
effects of the face sheets thicknesses variation on the frequency response and in agreement with Fig. 10a, 
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considering rotary inertia effects during the core thickness variation study has no effect on the predicted 
results. 

 
 

 
Fig. 10. Frequency response of a clamped sandwich beam with viscoelastic core, G*=7.037(1+0.3i)10-1 MPa, and 
composite face sheets (a)- h1=h3=4·10-3 m, (b)- h1=h3=8·10-3 m, (c)- h1=h3=12·10-3 m, (d)- h1=h3=20·10-3 m. The 
solid and dashed lines indicate, respectively, frequency response with and without the rotary inertia effects 
 

 
Fig. 11. Frequency response of a clamped sandwich beam with composite face sheets, h1=h3=20·10-3 m, and 
viscoelastic core, (a)- G*=7.037(1+0.3i)10-1 MPa, (b)- G*=7.037(1+0.3i)100 MPa, (c)- G*=7.037(1+0.3i)101 MPa, 
and (d)- G*=7.037(1+0.3i)102 MPa. The solid and dashed lines indicate, respectively, frequency response with and 
without the rotary inertia effects 
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Fig. 12. Frequency response of a clamped sandwich beam with composite face sheets and viscoelastic core, 
G*=7.037(1+0.3i)10-2 MPa, with h2=8·10-2 m. The solid and dashed lines indicate, respectively, frequency response 
with and without the rotary inertia effects 
  

5. CONCLUDING REMARKS 
 
The Hamilton's principle was used to derive the four coupled partial differential equations of motion. The 

equations of motion were based on the higher order theory of composite sandwich beams, proposed in 

[14]. The non-dimensional parameters were introduced to find the adimensional forms of the equations of 

motion. The Galerkin discretization approach was applied on the non-dimensional equations of motion for 

the frequency response investigation. The face sheets fiber angle and layer thicknesses effects on the 

frequency response were examined. A very interesting study was established for exploration of the effects 

of different ratios of the core shear modulus with respect to the face sheets Young's modulus on the 

frequency response of the beam. The main innovations of this research are summarized as follows: the 

fiber angles increment makes the structure softer, in other words, it causes a reduction in the natural 

frequencies and an enlargement in the transverse displacements. A more interesting study was carried out 

on the specialized features of the current formulation, i.e. regarding the core Young's modulus, which 

participated in the axial and bending strain energies and hardens the structural stiffness, as it is expected, 

and the beam rotary inertia, which affects the beam kinetic energy and has a softening effect. The results 

showed the errors of discarding the core Young's modulus effects are more evident with increasing the 

core thickness and shear modulus. On the other hand, the rotary inertia effect is manifested by increment 

in the face sheets thickness, while when the face sheet remains constant it can be neglected in spite of the 

increment in the core thickness. Hence, for relatively strong shear modulus with respect to the face sheets 

Young's modulus, the core Young's modulus cannot be neglected, on the other hand, for relatively thick 

face sheets, elimination of the rotary inertia effects makes evident errors.  
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