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Abstract– This article deals with a simple Cartesian practical method named blocked-off 
procedure to study the steady state combined conductive-radiative heat transfer in two-dimensional 
irregular geometries. Using this technique, both straight and curvilinear boundaries can be treated. 
The finite-volume method is employed to solve the energy equation and the discrete ordinates 
method (DOM) is used to solve the radiative transfer equation (RTE) to obtain the temperature and 
radiative-conductive heat flux distributions inside the participating medium. The walls of 
enclosures are opaque, diffuse and gray with specified temperatures. The medium was considered 
to be absorbing-emitting and isotropic scattering with variable thermal conductivity. In the case of 
constant thermal conductivity, results have been compared with those reported in the literature. 
The major part of this work is to investigate the effects of variable thermal conductivity on the 
thermal characteristics of radiative-conductive systems.           
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1. INTRODUCTION 
 

Combined radiation and conduction   heat transfer in an absorbing, emitting and scattering medium is 
important in many engineering applications such as heat transfer process in glasses, thermal insulation 
materials and optical measurement of flame, etc. Most of the previous studies dealt with combined 
conduction-radiation heat transfer considering constant thermal conductivity for simple geometries. For 
numerical solution of the radiative transfer equation (RTE), different numerical schemes including the 
finite volume method (FVM), discrete ordinates method (DOM), zone method, Monte Carlo method, flux 
method, discrete transfer method and P୒ method have been used. None of these methods is superior to the 
others in all aspects and every method has its own relative benefits and disadvantages. About the effects of 
variable thermal conductivity in a combined radiative-conductive thermal system limited literature is 
available [1, 2]. For this reason, no work has been reported so far that deals with the thermal analysis of 
radiative-conductive heat transfer in a 2-D complex geometry area by considering variable thermal 
conductivity. 

The method of discrete ordinates used in the present work is an accurate simplified method to solve 
radiative transfer problems. This technique was originally formulated by Chandrasekar in 1950 [3], and 
has been deeply studied by Carlson and Lathrop in the 60-70’s [4] and by Fiveland and Truelove in the 
80’s [5, 6]. 

Up to now, the combined radiation and conduction heat transfer in participating medium has been 
solved by many investigators. For example, Yuen and Wong [7] investigated the influence of the 
anisotropic scattering on combined heat transfer in one-dimensional planar geometry. Ismail and Salinas 
[8] used the DOM with a multi-dimensional spatial scheme for the radiative part and used the finite-
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volume method for solving the energy equation. Control-Volume Finite Element Method (CVFEM) has 
been used to analyze combined conduction-radiation problem in two-dimensional cavities by Rousse et al. 
[9]. The DOM was used for analyzing combined convection radiation heat transfer in separated duct flows 
by the second author [10]. The product discrete ordinates method found its application in the work of Kim 
et al. [11] for solving combined conduction-radiation problem in rectangular enclosures. Talukdar et al. 
[12] used the collapse dimension method for the solution of combined mode of heat transfer. Lee and 
Viskanta [13] compared the solutions of the combined conductive-radiative heat transfer in the two-
dimensional semitransparent media using the finite-volume method for the energy equation coupled with 
the DOM and diffusion approximations for the RTE. 

In order to avoid the complexity of treating the non-orthogonal grids for the irregular geometry, it is 
suitable to formulate a procedure to model the irregular geometries using the Cartesian coordinates. In the 
computational fluid dynamics (CFD) problems, the concept of blocked-off region was applied previously 
by Patankar [13]. In participating media, Chai et al. [14, 15] discussed different possibilities of solving 
radiative transfer problems in irregular structures using the discrete ordinates method and the finite volume 
method. Talukdar [16] analyzed the two-dimensional irregular geometries with the concept of blocked-off 
region using the Discrete Transfer Method (DTM). He found that the method of block-off can be 
recommended as a good alternative to solving problems with irregular geometries.  

In all of the above researches, the thermal conductivity of the radiating medium was assumed to be 
constant. It is evident that this assumption may lead to inaccurate results in a media with large temperature 
gradients. For this purpose, the present study deals with numerical analysis of radiative-conductive heat 
transfer in irregular shape enclosures in which the variation of thermal conductivity of the participating 
media with temperature is taken into account. In this paper, a general formulation of the DOM and the 
FVM to analyze conduction–radiation heat transfer with variable thermal conductivity is presented. To 
validate the numerical findings, some representative results are compared with those available in the 
literature for constant thermal conductivity. Moreover, effects of variable thermal conductivity on thermal 
behavior of participating media inside a T shape furnace with heat source are carried out. 

 
2. PROBLEM FORMULATION 

 
The energy equation for coupled radiation–conduction heat transfer of an absorbing, emitting and 
scattering media under steady state condition with variable thermal conductivity and heat generation 
within a radiating medium is as in Siegel and Howell [17]: 

.׏ ሺk׏Tሻ െ .׏ q୰ ൅ Qሶ ᇵ ൌ 0                                                      (1.a)

In this study, the above equation is estimated by the following one, but by considering variable thermal 
conductivity as a function of temperature: 

k׏ଶT െ .׏ q୰ ൅ Qሶ ᇵ ൌ 0                                                        (1.b) 

The variation of thermal conductivity with temperature is taken as: 

kሺTሻ ൌ k଴  + αᇱ (T -T୰ୣ୤)                                (2) 

Where	k଴ is the reference thermal conductivity and α' is the variable thermal conductivity parameter. 
 
a) Radiative problem 
 

In Eq. (1.a), ׏. q୰, is the divergence of the radiative heat flux given by: 

.׏ q୰ ൌ κሾ4πIୠሺTሺrሻሻ െ Gሺrሻሿ                              (3) 

here,κ and Iୠare absorption coefficient and black body radiation intensity respectively. The last term is 
irradiation that can be computed as follows: 
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 Gሺrሻ ൌ ׬ Iሺr, sԦሻdΩ
ସ஠

            (4)

To obtain ׏. q୰, it is necessary to solve the radiative transport equation. This equation for an 
absorbing, emitting and scattering gray medium with isotropic scattering can be written as [18]: 

 ሺsԦ. ,ሻIሺr׏ sԦሻ ൌ െβIሺr, sԦሻ ൅ κIୠሺTሺrሻሻ ൅
σୱ
4π

Gሺrሻ (5) 

where, I, β and σୱ are radiation intensity, extinction coefficient and scattering coefficient, respectively. 
For diffusely reflecting surfaces, the radiative boundary condition is computed by: 

 Iሺr୵, sԦሻ ൌ ε୵IୠሺTሺr୵ሻሻ ൅
ρ୵
π

න Iሺr୵, sԦ୧୬ሻ|nሬԦ୵. sԦ|dΩ୧୬

୬ሬሬԦ౭. ୱሬሬԦ౟౤ழ଴

 (6) 

Where	r୵, nሬԦ୵, ρ୵	and	ε୵ and  are the position denoting the boundary surface, outward unit vector normal 
to the surface, wall reflectively and emissivity of the surface, respectively. 

In the discrete ordinates method, Eq. (5) is solved for a set of M different directions sԦ୩ ,k=1,2,…,M , 
and the integrals over direction are replaced by numerical quadratures, that is: 

׬										 fሺsԦሻd
ସ஠

Ω ൎ ∑ w୩fሺsԦ୩ሻ
୑
୩ୀଵ 																																																																										(7) 

Where	w୩ is the quadrature ordinates weight associated with direction sԦ୩. Thus, Eq. (5) is approximated by 
a set of M equations: 

ሺݏԦ௠. ,ݎሻIሺ׏ Ԧ௠ሻݏ ൌ െβܫሺݎ, Ԧ௠ሻݏ ൅ ሻሻݎI௕ሺܶሺߢ ൅
ఙೞ
ସగ
Gሺrሻ , m=1,2,…, M                            (8)

subject to the boundary conditions: 

 Iሺݎ௪, Ԧ௠ሻݏ ൌ ௪ሻ൯ݎ௪I௕൫ܶሺߝ ൅
௪ߩ
ߨ

෍ ,௪ݎ௞Iሺݓ |Ԧ௜௡௠ሻݏ ሬ݊Ԧ௪. |Ԧ௠ݏ
௡ሬԦೢ. ௦ሬሬԦ೔೙೘ழ଴

																									 ሺ9ሻ

   Once the intensities have been determined, the value of incident radiation (G) may be found from its 
definition as follows: 

Gሺݎሻ ൌ න Iሺݎ, sԦሻ݀Ω
ସగ

ൌ෍ݓ௞Iሺݎ, 																																																								Ԧ௞ሻݏ

ெ

௞ୀଵ

ሺ10ሻ	

In the Cartesian coordinates system, Eq. (8) becomes, 

             ξ୫
ப୍ౣ

ப୶
൅ η୫

ப୍ౣ

ப୷
൅ βI୫ ൌ βS୫ (11)

Where	S୫ is shorthand for the radiative source function as: 

S୫ ൌ ሺ1 െ ωሻI௕ሺܶሺݎሻሻ ൅
ω
ߨ4

Gሺrሻ (12)

In which	ξ୫and	η୫ are the directional cosines of  sԦ୫, and ω ൌ ሺσୱ β⁄ ሻ is the scattering albedo. 
By using (DOM) and discretization (RTE) with the help of finite volume method, The volume 

averaged intensity (I୮୫	) for any discrete ordinate (m) of the control volume can be calculated as follows, 
[18]: 

 I୮୫ ൌ
βVS୮୫ ൅ |ξ୫|A୶I୶౟౤

୫ γ୶ ൅ |η୫|A୷I୷౟౤
୫ γ୷

βV ൅ หξ୫หA୶౥౫౪γ୶ ൅ หη୫หA୷౥౫౪γ୷
 (13)

Where 
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A୶ ൌ ൫1 െ γ୶൯A୶౥౫౪ ൅ γ୶A୶౟౤  

A୷ ൌ ቀ1 െ γ୷ቁ A୷౥౫౪ ൅ γ୷A୷౟౤ 
(14) 

In which (γ୶	) and (γ୷) are spatial differencing weights related to the x and y-directions, respectively and 
have values between 0.5 and 1.0. We select the step scheme (γ୶ ൌ γ୷ ൌ 1.0) which is simple, convenient, 
stable and ensures positive intensities. 

Assuming that the boundary conditions are given, the system of equations is closed and defines an 
interpolation system relating the intensities at the volume to the face values. A two-dimensional Cartesian 
enclosure has four corners, from each of which ଵ

ସ
Mሺ	

୑

ଶ
൅ 1ሻ directions must be traced (covering one quarter 

of directions), for a total of Mቀ୑
ଶ
൅ 1ቁordinates [18]. 

 
3. SOLUTION OF RADIATIVE CONDUCTIVE MODEL 

 
By using a set of reference parameters, the following non-dimensional group can be found in a combined 
radiation-conduction problem: 

4423
0

4 44 ref

'''

refref

'

ref
cr

ref
ref βσT

Q
Q,

σT

q
Q,

σT

βα
λ,

σT

βk
N,

σT

I
Iβy,Yβx,X,T/TΘ


        (15) 

The energy equation in non-dimensional form is expressed as: 

(1+
 ሺΘିଵሻ

ே
)(డ

మΘ

డ௑మ
൅

డమΘ

డ௒మ
ሻ ൌ S௧ (16) 

S௧ ൌ
ሺ1 െ ߱ሻ

ݎܿܰ
൭Θ4ሺrሻ െ

1

4
෍݇ݓIሺ̅r, Ԧ݇ሻݏ
ܯ

݇ൌ1

൱ െ
ሶܳ

ݎ4ܰܿ
 ሺ17ሻ

In these equations, λ is the conductivity-temperature coefficient, Nୡ୰ is the conduction-radiation parameter, 
and S୲ is total source term. 

After determining the intensities and temperature fields, the heat fluxes can be calculated. The 
dimensionless directional heat fluxes, Q୶	and Q୷ , including both conduction and radiation are defined as 
in Kim et al [11]: 

ܳ௫ ൌ െ
4Nୡ୰
߬

߆߲
߲ܺ

൅෍ݓ௞ξ௞I̅୩																																																																	ሺ18 െ aሻ

ெ

௞ୀଵ

 

Q୷ ൌ െ
4Nୡ୰
τ

∂Θ
∂Y

൅෍w୩η୩I̅୩
୑

୩ୀଵ

																																																															ሺ18 െ bሻ 

 where, the first and second terms on the right-hand side are the dimensionless conductive and radiative 
heat fluxes. 

The energy Eq. (16), which is non-linear is discretized using the finite-volume method as in Patankar 
[13]. It is worth noting that not only are the governing transport equations coupled, but also their boundary 
conditions are interlocked. Thus, an iterative solution is needed. 
 

4. THE BLOCKED-OFF METHOD 
 
The combined conductive and radiative heat transfer in the irregular geometries is modeled using the 
blocked-off method commonly used in the CFD. In the blocked-off method, we draw rectangular nominal 
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-According to the results, combining DOM with blocked-off method demonstrates a simple numerical tool 
with suitable accuracy to analyze coupled conduction – radiation heat transfer problems in 2-D irregular 
geometries.  
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