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Abstract— This article deals with a simple Cartesian practical method named blocked-off
procedure to study the steady state combined conductive-radiative heat transfer in two-dimensional
irregular geometries. Using this technique, both straight and curvilinear boundaries can be treated.
The finite-volume method is employed to solve the energy equation and the discrete ordinates
method (DOM) is used to solve the radiative transfer equation (RTE) to obtain the temperature and
radiative-conductive heat flux distributions inside the participating medium. The walls of
enclosures are opaque, diffuse and gray with specified temperatures. The medium was considered
to be absorbing-emitting and isotropic scattering with variable thermal conductivity. In the case of
constant thermal conductivity, results have been compared with those reported in the literature.
The major part of this work is to investigate the effects of variable thermal conductivity on the
thermal characteristics of radiative-conductive systems.
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1. INTRODUCTION

Combined radiation and conduction heat transfer in an absorbing, emitting and scattering medium is
important in many engineering applications such as heat transfer process in glasses, thermal insulation
materials and optical measurement of flame, etc. Most of the previous studies dealt with combined
conduction-radiation heat transfer considering constant thermal conductivity for simple geometries. For
numerical solution of the radiative transfer equation (RTE), different numerical schemes including the
finite volume method (FVM), discrete ordinates method (DOM), zone method, Monte Carlo method, flux
method, discrete transfer method and Py method have been used. None of these methods is superior to the
others in all aspects and every method has its own relative benefits and disadvantages. About the effects of
variable thermal conductivity in a combined radiative-conductive thermal system limited literature is
available [1, 2]. For this reason, no work has been reported so far that deals with the thermal analysis of
radiative-conductive heat transfer in a 2-D complex geometry area by considering variable thermal
conductivity.

The method of discrete ordinates used in the present work is an accurate simplified method to solve
radiative transfer problems. This technique was originally formulated by Chandrasekar in 1950 [3], and
has been deeply studied by Carlson and Lathrop in the 60-70’s [4] and by Fiveland and Truelove in the
80’s [5, 6].

Up to now, the combined radiation and conduction heat transfer in participating medium has been
solved by many investigators. For example, Yuen and Wong [7] investigated the influence of the
anisotropic scattering on combined heat transfer in one-dimensional planar geometry. Ismail and Salinas
[8] used the DOM with a multi-dimensional spatial scheme for the radiative part and used the finite-
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volume method for solving the energy equation. Control-Volume Finite Element Method (CVFEM) has
been used to analyze combined conduction-radiation problem in two-dimensional cavities by Rousse et al.
[9]. The DOM was used for analyzing combined convection radiation heat transfer in separated duct flows
by the second author [10]. The product discrete ordinates method found its application in the work of Kim
et al. [11] for solving combined conduction-radiation problem in rectangular enclosures. Talukdar et al.
[12] used the collapse dimension method for the solution of combined mode of heat transfer. Lee and
Viskanta [13] compared the solutions of the combined conductive-radiative heat transfer in the two-
dimensional semitransparent media using the finite-volume method for the energy equation coupled with
the DOM and diffusion approximations for the RTE.

In order to avoid the complexity of treating the non-orthogonal grids for the irregular geometry, it is
suitable to formulate a procedure to model the irregular geometries using the Cartesian coordinates. In the
computational fluid dynamics (CFD) problems, the concept of blocked-off region was applied previously
by Patankar [13]. In participating media, Chai et al. [14, 15] discussed different possibilities of solving
radiative transfer problems in irregular structures using the discrete ordinates method and the finite volume
method. Talukdar [16] analyzed the two-dimensional irregular geometries with the concept of blocked-off
region using the Discrete Transfer Method (DTM). He found that the method of block-off can be
recommended as a good alternative to solving problems with irregular geometries.

In all of the above researches, the thermal conductivity of the radiating medium was assumed to be
constant. It is evident that this assumption may lead to inaccurate results in a media with large temperature
gradients. For this purpose, the present study deals with numerical analysis of radiative-conductive heat
transfer in irregular shape enclosures in which the variation of thermal conductivity of the participating
media with temperature is taken into account. In this paper, a general formulation of the DOM and the
FVM to analyze conduction—radiation heat transfer with variable thermal conductivity is presented. To
validate the numerical findings, some representative results are compared with those available in the
literature for constant thermal conductivity. Moreover, effects of variable thermal conductivity on thermal
behavior of participating media inside a T shape furnace with heat source are carried out.

2. PROBLEM FORMULATION

The energy equation for coupled radiation—conduction heat transfer of an absorbing, emitting and
scattering media under steady state condition with variable thermal conductivity and heat generation
within a radiating medium is as in Siegel and Howell [17]:

V.(kVT) - V.q, + Q" =0 (1.a)

In this study, the above equation is estimated by the following one, but by considering variable thermal
conductivity as a function of temperature:

kV2T - V.q, + Q" =0 (1.b)
The variation of thermal conductivity with temperature is taken as:
k(T) = ko + o (T -Tpef) 2
Where k, is the reference thermal conductivity and o' is the variable thermal conductivity parameter.

a) Radiative problem

In Eq. (1.a), V.q,, is the divergence of the radiative heat flux given by:
V.q; = k[4mly(T(r)) — G(r)] 3)

here,k and I,are absorption coefficient and black body radiation intensity respectively. The last term is
irradiation that can be computed as follows:
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G(r) = [ 4 11, 8)d0 4)

To obtain V.q,, it is necessary to solve the radiative transport equation. This equation for an
absorbing, emitting and scattering gray medium with isotropic scattering can be written as [18]:

G.VI(r,2) = —BI(r,2) + Kl (T(O) + :—;G(r) (5)

where, I, B and o, are radiation intensity, extinction coefficient and scattering coefficient, respectively.
For diffusely reflecting surfaces, the radiative boundary condition is computed by:

o Pw (= 24
109 =T+ 25 [ 10, 5M . slaa" ©)

Tiw. Si1<0
Wherer,,, 1,,, pw and &,, and are the position denoting the boundary surface, outward unit vector normal
to the surface, wall reflectively and emissivity of the surface, respectively.

In the discrete ordinates method, Eq. (5) is solved for a set of M different directions sy ,k=1,2,....M ,
and the integrals over direction are replaced by numerical quadratures, that is:

S f3dQ = L, wif(1) @)

Where wy is the quadrature ordinates weight associated with direction Sy. Thus, Eq. (5) is approximated by
a set of M equations:

G DI, ) = =BI (T, 3) + K1y (T() +2G(r) , m=1,2,..., M ®)

subject to the boundary conditions:
S P 2i = 2
G0, 5) = 2ulo (TG + 22 D" w3, 37 - S ©
Ay $M, <0

Once the intensities have been determined, the value of incident radiation (G) may be found from its

definition as follows:

M
G(r) = f 1(r,3)dQ = Z wil(r 3 (10)
k=1

41

In the Cartesian coordinates system, Eq. (8) becomes,

arm arm m
i S+ Nl 5+ BI™ = BS (11)

Where S™ is shorthand for the radiative source function as:

S™ = (1 = (T () + 7= 6() (12)

In which &,,and n,, are the directional cosines of S, and w = (o4/B) is the scattering albedo.
By using (DOM) and discretization (RTE) with the help of finite volume method, The volume
averaged intensity (If') for any discrete ordinate (m) of the control volume can be calculated as follows,
[18]:
BVSE + [EmlAxLg, vx + INm|Ay I vy
BV + |&-’m|AXouth + |nm|AYOutYy

p (13)
Where
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Xout

Ay =(1—79)Ac  +7.A,
(1-7v) TeBxin 14

Ay = (1 - Vy) Ayoue T Yy Ayin

In which (v, ) and (yy) are spatial differencing weights related to the x and y-directions, respectively and
have values between 0.5 and 1.0. We select the step scheme (v, = y, = 1.0) which is simple, convenient,
stable and ensures positive intensities.

Assuming that the boundary conditions are given, the system of equations is closed and defines an
interpolation system relating the intensities at the Volume to the face values. A two-dimensional Cartesian
enclosure has four corners, from each of which - M( + 1) directions must be traced (covering one quarter
of directions), for a total of M ( + 1)ord1nates [18]

3. SOLUTION OF RADIATIVE CONDUCTIVE MODEL

By using a set of reference parameters, the following non-dimensional group can be found in a combined
radiation-conduction problem:

O=T/T X =pxY=pyl= L N - kof A= b 0-—1L_¢o- Q 15)

)ef) 4 cr 3 2 4
Tref 40—Tref 40—Tref Tref ﬁ ref

The energy equation in non-dimensional form is expressed as:

A
(1+ (0- 1))(ZXGZ) ayz) =5, (16)
1-w) 1\ 0
W .
S = N—(®4(r) =3 2wl sk)> - a”
cr = cr

In these equations, A is the conductivity-temperature coefficient, N, is the conduction-radiation parameter,
and S, is total source term.

After determining the intensities and temperature fields, the heat fluxes can be calculated. The
dimensionless directional heat fluxes, Q, and Qy , including both conduction and radiation are defined as
in Kimetal [11]:

M
4N, 00
Q= -4 gk (18 - a)
k=1
M
4N, 00 o
Q=-= WJFZW“”“I (18 — b)
k=1

where, the first and second terms on the right-hand side are the dimensionless conductive and radiative
heat fluxes.

The energy Eq. (16), which is non-linear is discretized using the finite-volume method as in Patankar
[13]. It is worth noting that not only are the governing transport equations coupled, but also their boundary
conditions are interlocked. Thus, an iterative solution is needed.

4. THE BLOCKED-OFF METHOD

The combined conductive and radiative heat transfer in the irregular geometries is modeled using the
blocked-off method commonly used in the CFD. In the blocked-off method, we draw rectangular nominal
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domains around the given real domains (simulated domain) and the whole rectangular region is divided
into two parts: active and in active or blocked-off regions. The solutions are sought just for active regions.

These regions are un-shaded in Fig. la, and b. In these figures, the shaded portion is called the
inactive region and solutions are not important. Also, curved boundaries emerge to be a stair step as
shown in Fig. 1b. The magnitude of an intensity that enters an inactive region becomes zero and if it enters
again to an active region, it is considered as another boundary condition. All the simulated domain is
discretized into several control volumes and the control volumes which are inside the active region are
intended as one (1), otherwise they are zero (0).This subject is shown in Fig. 2. Moreover, in this method,
additional boundary conditions appear because of the extension of irregular geometry into the rectangular
shape. So, in the calculations, these boundaries are treated like external boundaries which are sides of the
rectangular domain. These boundary conditions are shown as murky color in Fig. 2.
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Fig. 2. A domain with blocked-off/inactive region

The procedure of the numerical calculations for temperature distribution can be summarized as

follows:

1- Assume zero value for the radiative source term.

2- Assume a temperature distribution over the active region medium.

3- Calculate thermal conductivity by using Eq. (2).

4- Solve the RTE using the DOM method for active control volumes in all directions.

5- Solve the energy equation for the active region to obtain the temperature distribution.

6- Calculate source term by using Eq. (12).

7- Repeat steps 3-7 until the following criteria is achieved:
-5

m- _
2P | <107%and, error®, = Max
m p

n n—1
9p—0p

n

0p

error I, = Max <107°.

Where, n and n-1 denote the current and previous iteration value of the parameters, respectively. In order
to solve the energy equation, Gauss-Seidel iteration method is used. [19].
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5. VALIDATION

To show the accuracy of the present method, the algorithm is first tested for a simple geometry, namely a
square enclosure. Then, some test problems are considered to show the performance and applicability of
the present method to solve radiative problem in irregular geometries.

a) Conduction-radiation
Case 1:

The first test case deals with the combined conductive radiative heat transfer in a cavity of infinite
length with a square cross-section containing an absorbing, emitting and non-scattering medium with
- =0.25, 2.5, 25.0), optical thickness (BL. =1.0) and black
walls. The left wall is at dimensionless temperature, ( @.;=1.0) and for other walls (@y,er =0.5). Besides,

conduction-radiation parameter (N, = -
constant thermal conductivity (A = 0.0) has been made. Geometry of this problem is shown in Fig. 3a.
Figure 3b shows the variation of mid-plane temperature (Y =0.5) distribution. The results of the present
study match with the findings of Kim et al. [11]. They solved the same problem by using the DOM with S,
angular quadrature, diamond spatial scheme and uniform grid for the radiative part of the problem, while
the conductive term is discretized using the central difference scheme. In this problem, we have used Sg
approximate with (N, X N;, = 40x40) spatial mesh and step scheme. Figure 3b shows good consistency
between the present numerical results with theoretical findings of Kim et al [11].

y
]
.1 @=03 (L1)
o=1 @=03
(0.0) 8=03 Ly x

Fig. 3a. Geometry of case 1

P ty— v i — o - ” - »
» | = e .
- . Kim etal [11] §90 - Kim etal [11]

e Present work §os S — Present work
T S £ iy
z e, =07 e
g o ezs 4 .
2“!. .\..-...,,_“. _gns e,
€ | e, 11 .0 0 T ean
E 06} 'ut_‘ Eas 1
] nsl - i

-] [ K] 02 5] 0e -1} .11 er (-1 ] [E] 1 K] 02 (-3 ] 04 s -1 er [-1 ] (X ] 1

X X
b1 b2

12¢ 14
% il . Kim et al [11] § o Marker: Kim et al [11]
E- 'II\ — Present work Line: present work
Gt e £ N, = 025.25,250
i il | .“""x-. AT \*‘c«t::' - f
g“‘[ ' : i .._;;~;;u..u.. uk
E“" M, é“’ n‘““z::ﬂun
. Sl nane £ "hT

03'3 01 02 03 04 s 1% or -] ) K ] u! u‘? o1 02 03 04 s (19 er o8 (‘% ] 1

b4

Fig. 3b. Variation of mid-plane temperature (Y=0.5) for case 1; (b.1:N.=25.0),
(0.2: N =2.5),(b.3: N =0.25),(b.4: effect of N;), comparison with the results of Kim et al [11]
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b) The blocked-off method
Case 2:

For the second problem, we consider radiative heat transfer from four similar solid blocks, placed
symmetrically in a square enclosure as shown in Fig. 4a.The relative dimension of the blocks and their
placement inside the computational domain with respect to that of the enclosure, are also shown in Fig.
4a.The free space within the domain has been assumed to be filled with a gas medium that has been
considered to be absorbing and emitting. All four of the boundaries of the computational domain have
been considered to be black (e = 1.0), and maintained at a constant temperature of (300° K) while the
inner solid blocks are assumed to be at a uniform higher temperature of (600° K). The absorption
coefficient of the gas (kx = 1.0 m™') and radiative equilibrium has been assumed within the enclosure. In
this problem, we have used Sg approximate with (N, X Ny, = 40x40) spatial mesh and step scheme.

NORTH, T=300K

GAS MEDIUM
]
/ Wz
WEST EAST
- | ——-—
Vg

B

SOUTH, T=300K
Fig. 4a. Computational domain considered for validation of pure radiation problem
(case 2) four similar solid blocks placed symmetrically
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Fig.4-b. Radiative heat flux along the south boundary of the enclosure for different emissivities
(b.1:£=1.0), (b.2: £=0.7), (b.3: £ =0.5), (b.4: € =0.2), comparison
with the results of Talukdar et al. [20]
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The comparisons of the radiative heat fluxes along the south wall of the enclosure for varying
emissivities (¢ = 0.2, 0.5, 0.7 and 1.0) with theoretical findings by Talukdar et al [20] are depicted in Fig.
4b. They solved this problem by using a new methodology in a complex porous and blocked-off method.
It is seen from this figure that an excellent agreement is obtained for situations.

6. RESULTS

The following theoretical results are about combined conductive-radiative heat transfer in the enclosure
shown in Fig. 5, in which a T shape enclosure with gray surfaces and one heat source with triangle shape
is considered. The boundary walls are kept at specified temperatures as follows (Table 1):

Table 1. Surface temperatures for T- shape enclosure

Wall number 1 2 and 3 4 and 5 6 and 7 8
Temperature(k) 400 600 800 900 1000

—> Wall6
Wall 4 ,
A
heat source with triangular shape 3Lx
Wall 3 <€+ > Wall 2
L_Wall] |
<>

Lx
Fig. 5. Geometry of test problem

In this problem, we investigate the effect of variable thermal conductivity on the thermal
characteristics of radiative-conductive system.

For all of the test cases, (0=0.5), (B = 1.0), (Trer = Twang) and the power of heat source is considered
106(%). Besides, Sg approximate is used along the DOM with ( Ny x N, = 40x80) spatial mesh.

If in combined conductive - radiative heat transfer, the thermal conductivity of participating media is
assumed to be variable as a function of temperature according to Eq. (2), there are two related main non-
dimensional parameters including (N..) and (). In Fig. 6, the variation of thermal conductivity as a
function of temperature for air is plotted. In this figure, the exact values for air thermal conductivity is
taken based on the following formula, according to Ref [21]:

K(T) = 7.632 x 1072 + 9.705% 10~5(T — 1000) (26)
Accordingly:
koP -
Ner = -0 =33 x 10 4

ref

A:% —44%x10°%
0
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Fig. 6. Variation of thermal conductivity with temperature

a) Effect of conductivity-temperature coefficient

In this section, the effect of variation of thermal conductivity on thermal behavior of the combined
conductive-radiative system is studied. In Fig.7, the distributions of gas temperature along the AA" section
which is depicted in Fig. 5 are plotted for four different values of the parameter (A). In the computation of
this figure, it is assumed that all surrounding walls are black by considering (N.=0.00033) and assuming
isotropic scattering participating media. It is seen that conductivity-temperature coefficient has a slight
effect on temperature distribution, considering the fact that the value of gas maximum and minimum
temperatures increase with increasing in conductivity-temperature coefficient. Besides, in order to have
much clearer figure for demonstrating the effect of parameter A on thermal behavior of the system, the
temperature distributions in AA’ section for the maximum and minimum values of conductivity-
temperature coefficient are compared to each other in Figure 8. It can be seen that temperature distribution
has different trends near the torch because of different values of A and also the maximum difference of
about 4% is depicted in Fig. 8 for the temperature computation at A= 0.00044, and A= -0.0022.

Prediction of temperature distribution in the chamber when A is not zero is difficult. To clear the
subject in Fig. 9, variation of heat conductivity is shown in section AA'. It can be seen that as the value of
A increases, the thermal conductivity near the wall decreases and around the torch increases. The
interesting point in this figure is that the lowest thermal conductivity for (A=-0.0022) occurs at the torch.
In other words, by decreasing the value of A, conductive heat transfer near the wall increases and it causes
the temperature to be closer to the wall temperature, while around the torch, the opposite behavior is seen.

1200 -
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—~ 1150} —=— 7 =00 E
& —— /. =-0.0022
2 M0 . 7=.0.001 i
5 :
] L -
=9
= 1000} .
'U
b=

9501 =

g L=
9000 0.2 0.4 0-6 0..8 ; 1'2 1'4 1 IS 1 .IB 3

Fig. 7. The effect of conductivity-temperature coefficient on the distribution temperature in
the section AA’, for (N, = 0.00033, ¢, = 1.0, 8 = 1.0, =0.5)
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Fig. 8. Temperature

Figure 10 depicts the effect of parameter A on distribution of conductive heat flux fraction (
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along the bottom wall. It is revealed from this figure that conductive heat flux has an almost uniform
distribution over the bottom wall, especially for high value of parameter A, such that for negative value of
conduction-temperature coefficient, conductive heat flux in the region near to the surrounding walls
increases. Moreover, it is seen from Fig. 10 that high rate of conductive heat flux takes place by
decreasing the value of parameter A, especially on the edges of the bottom wall. However, in all cases, the
contribution of the conduction heat transfer is less than 25%.
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Fig. 10. The effect of conductivity-temperature coefficient on the conductive heat flux fraction
over the bottom wall, for (N.. = 0.00033,¢,, = 1.0, 8 = 1.0, w=0.5)
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b) Effect of conduction-radiation parameter

The effects of conduction-radiation parameter, ( N..), on distribution of conductive heat flux fraction
over the bottom wall are shown in Fig. 11. In this case, the whole walls are black, scattering is isotropic
and also, (1) is constant (A= 4.4 x 107*). It is seen that (N, ) has significant effect on conduction heat flux,
such that for small value of (N..) in which the radiation heat transfer is dominant, there is almost uniform
distribution of conductive heat flux over the bottom wall with very small value, such that conduction heat
flux has increasing trend with increasing in (N..). By focusing on Fig. 12 in which the variations of
absolute total heat flux on the bottom wall are shown, it is seen that the same trend as was observed before
in Fig. 11 for conductive heat flux also exists for absolute total heat flux over the bottom wall.

07 T T v T r T v T T

sl Nee =0.0005 /]
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05 =0.005 [,

0.4} =0.01 21/

03t
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Conductive heat flux fraction

%.5 O.IG O.I? 0?8 OTB :i ‘:1 'il2 1.I3 17-! 15
X
Fig.11.The effect of Conduction-radiation parameter on the conductive heat flux fraction
over the bottom wall, for (A = 0.00044, ¢, = 1.0, 8 = 1.0, w=0.5)
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Fig.12. The effect of Conduction-radiation parameter on the absolute total heat flux
over the bottom wall, for (A = 0.00044, ¢, = 1.0, 8 = 1.0, w=0.5)

The temperature distribution within enclosure is plotted in Fig. 13, in which four different values of
conduction radiation parameter were used in the computations. It is seen that at small value of (N.) which
is due to radiation dominance in a participating media, the value of maximum temperature inside the
enclosure increases and the effect of heat source on the whole domain of the media becomes more clear.
This fact can be seen easily if one compares Figs. 13a and d with each other. It is observed that, with
increasing in the value of conduction radiation parameter, near the boundaries, the temperature inside the
media becomes closer to the wall temperature due to increasing in conduction heat flux on the boundary

walls.
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Fig. 13. The effect of Conduction-radiation parameter on the temperature distribution within enclosure.
(2):N¢=0.0005,(b):N=0.001, (c):N=0.005,(d):N. = 0.01,
for (A = 0.00044, ¢, = 1.0, = 1.0, w=0.5)

7. CONCLUSION

The DOM and FVM with blocked-off method were used to analyze combined conduction —radiation heat
transfer in a T shape enclosure with one triangular shape heat source within absorbing, emitting and
scattering medium with variable thermal conductivity. The RTE and energy equations were solved with
DOM and FVM, respectively. The results of constant thermal conductivity and isotropic scattering have a
very good agreement with those available in the literature. The effect of variable thermal conductivity on
temperature distributions and conductive-radiative heat flux was studied.

The results of this study can be summarized as follows:
-In combined conduction and radiation heat transfer, there is always a contrast between these two modes
of heat transfer. Conduction heat transfer is dominant near the boundaries and radiation heat transfer is
important near the heat source zone. With increasing the relative contribution of heat conduction, the
temperature of the flame and boundaries penetrates further into the environment.
-Variation of thermal conductivity coefficient with temperature causes many difficulties in prediction of
temperature distribution and heat flux in the chamber. However, due to the small value of this quantity for
air, the thermal behavior of environment was not affected by this parameter, but in high temperature
systems, the effect of this parameter will be more important.
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-According to the results, combining DOM with blocked-off method demonstrates a simple numerical tool
with suitable accuracy to analyze coupled conduction — radiation heat transfer problems in 2-D irregular

geometries.
NOMENCLATURE
A surface area (m?) q heat flux (W/m?)
G incident radiation (W/m?) Q dimensionless heat flux
r  position(m) Q" heat source per unit volume (W/m?)
I radiation intensity (W/m? sr) s direction vector (m)
I  dimensionless radiation intensity S source term (W/m?)
K  thermal conductivity (W/mK) T temperature(K)
ko reference thermal conductivity (W/mK) \ volume (m?)
L length (m) w weight of angular quadrature
M number of discrete directions X,y,Z  spatial coordinate (m)
n, outward unit vector normal to the wall X,Y,Z dimensionless coordinate
N, conduction-radiation parameter
Greek symbols Subscripts
a' variable thermal conductivity parameter (W/mk?) ref reference quantity
A non-dimensional conductivity-temperature coefficient b black body
B extinction coefficient (m™1) out  exit
Y spatial differencing weights in input
&, emissivity of the surface m discrete direction
0 dimensionless temperature p nodal point
Kk absorption coefficient (m~1) r radiation
¢, x- and y- direction cosines X,y  coordinates
pw reflectivity of the surface Superscripts
pr medium density in incoming direction
o  Stefan-Boltzmann constant = 5.6704 X 1078W/m?K* m discrete direction
os scattering coefficient (m™1) n iteration level
T  optical thickness
w  scattering albedo
Q  solid angel (sr)
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