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Abstractï The present study is concerned with optimal shape determination of inhomogeneous 

and temperature dependent domains under steady state heat conduction. Such situations are 

important in many thermal design problems, especially in shape design of electronic components 

and chips. In the present paper, we formulate the shape optimization problem based on volume 

minimization of heat conductive material while limiting maximum temperature. The smoothed 

fixed grid finite element method which is a new approach based on the non-boundary-fitted 

meshes is used to obtain temperature field. The boundary parameterization technique using splines 

is also adopted to manipulate the shape variations. A modified version of the firefly algorithm 

which is a recently developed metaheuristic optimization technique is proposed as the optimizer. 

These modifications consist of adding memory, adding newborn fireflies and proposing a new 

updating formula. To evaluate the applicability of the proposed method five numerical examples 

are solved and the results are presented.          

 

Keywordsï Shape optimization, nonlinear heat conduction, smoothed fixed grid finite element method, 

metaheuristic optimization, firefly algorithm  

 

1. INTRODUCTION  
 

In the electronic components and chips, heat generated by the electrical elements is spread over the entire 

component by conduction and then transferred to the ambient via heat sinks or other devices. In such 

cases, design of the shape and size of the heat conducting medium have significant influence on the 

cooling performance of the equipment. In other words, in addition to the amount of the generated heat, the 

temperature distribution is dependent on the geometrical configuration of solid medium containing the 

heating element. A poor design may result in increasing the temperature of the devices, and even cause 

damage to the system components. Therefore, an optimal shape design for the component is definitely 

desirable and this is the problem considered in the present work. 

Approximate (or numeric) solution of a Shape Optimization Problem (SOP) typically involves two 

major parts. The first part is a direct problem solver which provides information about the system behavior 

under various geometrical conditions and the second is an optimization algorithm that leads to a 

convergence of the iterative shape profile by updating the solutions. Therefore, SOPs can be categorized 

as variable domain problems in which the domain geometry has to be modified in each iteration to fulfill 

some requirements. 

Among the several numerical methods used in the solution of the direct problem, the most appealing 

one in the context of variable domain problems is the Boundary Element Method (BEM). In the BEM, the 

domain discretization or mesh generation is not necessary, which makes BEM the most preferable method 
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for SOPs [1]. However, BEM has some drawbacks which limit its application in some problems, e.g. 

nonlinear on inhomogeneous materials. The other method is the Finite Element Method (FEM). The main 

drawback of FEM is that the mesh must be modified whenever the geometry of the problem is changed [2] 

and it is so cumbersome in variable domain problems. One approach to decrease FEM dependency on 

conventional mesh is to use Non-Boundary-Fitted Meshes (NBFM). By means of NBFMs in the analysis 

of variable domain problems, the analysis cost reduces significantly since there is no need to modify the 

mesh in iterations where the problem geometry is changed. The Fixed Grid Finite Element Method 

(FGFEM) [3 and 4] uses a fixed NBFM to perform a finite element analysis. In this method, the 

homogenization technique developed in [5] (as used in [3]) or a technique based on numerical integration 

(as used in [3]) is implemented to compute the element matrices. However, the homogenization procedure 

decreases the solution accuracy whereas numerical integration increases computational costs [4]. In the 

present work, the Smoothed Fixed Grid Finite Element Method (SFGFEM), which was previously 

proposed by the author in [6] is used to obtain the solution of direct problem. This method is based on the 

NBFMs and its main objective is to improve the accuracy of the formulation of the boundary intersecting 

elements. To tackle this, the gradient smoothing technique is used to evaluate domain integrals over the 

internal parts of the boundary intersecting elements. The gradient smoothing technique has been 

previously used in the smoothed finite element method [7]. The most interesting feature of this technique 

is simplification of integration over internal parts of the boundary intersecting elements. In the SFGFEM, 

the domain integrals are transformed into line integrals over the edges of smoothing cells and this will 

reduce the computational costs significantly. The SFGFEM has been previously used for the solution of 

inverse geometry problems [6, 8 and 9], unconfined flow problems in porous domains [10 and 11] and 

free surface potential flow problems [12]. 

Optimization appears in many real world problems and a considerable amount of work has been done 

in developing efficient algorithms for solving optimization problems. Classical optimization algorithms 

normally work well for smooth problems and use the gradient information which is difficult to obtain. In 

addition, the classical methods may converge to local optimum points. Thus, to overcome these 

difficulties, the gradient-free algorithms may be preferred. One class of derivative free techniques consists 

of nature inspired metaheuristic optimization algorithms. The vast majority of these algorithms have been 

derived from the behavior of biological or physical systems in nature [13]. These techniques have 

increased in popularity in recent years because of their ability to deal with complex optimization problems 

which are otherwise difficult to solve. The most popular methods are genetic algorithm [14], evolutionary 

strategies [15], evolutionary programming [16], particle swarm optimization [17], differential evolution 

[18], ant colony optimization [19], honey bee algorithm [20], bee algorithm [21], artificial bee colony [22], 

cuckoo search [23], hunting search [24], bat algorithm [25], firefly algorithm [26] and krill herd algorithm 

[27]. Besides bio inspired algorithms, there are nature inspired algorithms that mimic physical phenomena 

such as simulated annealing [28], harmony search [29], big bang-big crunch [30], charged system search 

[31], spiral optimization [32], biogeography based optimization [33], teaching learning algorithm [34] and 

ray optimization [35]. 

Firefly Algorithm (FA) is a recently developed, promising, metaheuristic optimization technique 

originally proposed by [36]. The FA is based on the idealized behavior of the flashing characteristics of 

fireflies. Based on Yang’s works, the FA is very efficient in finding the global optima with high success 

rates [26]. It is also shown, using various test functions, that the FA is superior to both PSO and GA in 

terms of both efficiency and success rate [26]. For a review on the literature of FA refer to [37, 38 and 39]. 

After first presentation of the FA in [36] some modifications were proposed by different researchers; for 

example refer to [40, 41 and 42]. To continue this way, in the present work, some basic modifications are 

introduced in the original FA to improve its performance [43 and 44]. These modifications consist of: i) 
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adding a kind of memory to transfer some information obtained in each iteration to the next one, ii) adding 

newborn fireflies to explore extensively the search space for global optimum point and iii) introducing a 

new updating formula to reduce wandering motion of fireflies. 

To evaluate the applicability of the proposed method in solution of SOPs five numerical examples are 

solved and the results are presented. The results show that a combination of the SFGFEM and the 

modified FA can be used effectively in the solution of shape optimization problems in heat conduction. 

The remaining part of this article deals firstly with solution of direct problem using SFGFEM and is 

followed by a brief review of the basics of the FA and a detailed description of the proposed 

modifications. After a brief note on the constraint handling approach, the numerical examples are solved 

and the results are presented. Finally the article ends with conclusions and references. 

 

2. SHAPE OPTIMIZATION IN HEAT CONDUCTION  

In the SOPs, it is assumed that the geometric shape of some parts of the domain boundary is unknown a-

priori  and must be obtained in the optimization process to minimize/maximize objective function 

subjected to constraints. Consider a general steady state conductive heat transfer occurred on a bounded 

domain W with boundary Wµ  (refer to Fig. 1). Also, assume the domain consists of an inhomogeneous 

material with temperature dependent thermal conductivity. The temperature field )(xT  satisfies the 

following governing equation and boundary conditions, 

[ ] WÍ=+ÐÖÐ xxxx 0)()(),( fTTk                                              (1) 

[ ] NqTTk GÍ=ÖÐ- xnxx )(),(                                                 (2) 

DTT GÍ= xx)(                                                      (3) 

where )(xf  is the body heat generation density and ),( Tk x  is the thermal conductivity of the media 

which, in general, is a function of position and temperature. NG  and DG  are Neumann and Dirichlet 

boundaries, respectively. q  and T  are the prescribed heat flux and prescribed temperature, respectively 

and n  is the unit outward normal vector. For direct problems, the geometry of the domain is assumed to 

be known and the temperature distribution over the entire problem domain can be determined directly. In 

the SOPs, the shape of the boundary UG  (see Fig. 1) is unknown a-priori  and must be determined in the 

optimization process. 

 
Fig. 1. Schematic representation of heat conductive domain, boundary conditions  

and unknown boundary parameterization 
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In order to obtain an approximate solution for SOP, the unknown boundary UG  is parameterized by a 

set of pN  shape parameters (or design variables) and a solution is pursued in a finite dimensional search 

space. Each distinct point in this search space represents a candidate shape for UG . A direct problem can 

then be solved to obtain the corresponding temperature field. In the present work, the unknown boundary 

is approximated by a cubic spline passed through a set of key points to form a smooth boundary. As 

shown in Fig. 1, the location of each key point iX  is represented using a base point 
iB  and a direction 

vector ie  as 

piiii Nir ,,2,1 3=+= eBX                                                         (4) 

where pN  is the number of key points and ir  is the shape parameter corresponding to the i th key point. 

In this work, the base points 
iB  and direction vectors ie  are assumed constant and therefore the unknown 

boundary UG  is parameterized based on the following unknown shape parameter vector P . 

],,,[ 21 pNrrr 2=P                                                                    (5) 

The optimization problem in the present work is defined as searching for optimum distribution of 

minimum amount of conductive material in such a manner that the temperature of the hottest point of the 

domain remains below a specified allowable value. Therefore, the objective function f  is defined as the 

area of the two dimensional domain )(PW  subjected to the following constraint. 

0)( max ¢-= allTTg P                                                                 (6) 

where maxT  and allT  are the maximum and allowable temperature, respectively. 

 

3. SMOOTHED FIXED GRID FINITE ELEMENT METHOD  

A typical NBFM is shown in Fig. 2. The intersection of elements with boundaries produces three types of 

elements, Internal Elements (IE), External Elements (EE) and Boundary Intersecting Elements (BIE). The 

IEs and BIEs are used in the solution of direct problem and are considered as active elements. The nodes 

located on these active elements are also considered as active nodes.  

 
Fig. 2. Classification of elements and nodes in a typical non-boundary-fitted mesh and smoothing cells 

Approximated temperature field 
hT  over the active elements can be written in terms of temperatures 

at the active nodes as: 

NTx =)(hT                                                                           (7) 

where N  is the shape function vector and T  is the nodal temperature vector. In the SFGFEM, the 

gradient smoothing technique is used to evaluate the gradient of the field variable. In this approach, each 
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element is divided into smoothing cells and the gradient of field variable is obtained using a smoothing 

operator [7]. The smoothing cells of IEs and BIEs are schematically presented in Fig. 2. Considering 
hTÐ  as the gradient of approximated temperature field, the smoothed temperature gradient in smoothing 

cell S  denoted by 
h

STÐ
~

 can be defined as: 

ñ
W

WÐ=Ð

S

dTT S
hh

S f
~

                                                          (8) 

where SW  is the domain of smoothing cell S and )(xSf  is the smoothing kernel defined for cell S . 

Integration by parts for the right side of Eq. (8) leads to: 

ññ
GW

G+WÐ-=Ð

SS

dTdTT S
h

S
hh

S nff
~

                                              (9) 

where SG  is the boundary of smoothing cell S  and n  is the unit outward normal vector on SG . A 

piecewise constant smoothing kernel is applied here as follows: 

í
ì
ë

WÎ

WÍ
=

S

SS

S

A

x

x
x

0

/1
)(f                                                     (10) 

where SA  is the area of the smoothing cell S . By substitution of )(xSf , the smoothed temperature 

gradient over smoothing cell S is obtained as: 

ñ
G

G=Ð

S

dT
A

T h

S

h
S n

1~
                                                        (11) 

Note that in Eq. (11) the gradient of the field variable is obtained via a line integration along the edges of 

smoothing cell. Substituting Eq. (7) in Eq. (11), the smoothed temperature gradient at smoothing cell S 

can be presented as: 

TBx S
h

ST
~

)(
~

=Ð                                                                      (12) 

ñ
G

G=

S

d
AS

S NnB
1~

                                                              (13) 

where SB
~

 is the smoothed gradient matrix. 

Now, converting the differential equation and natural boundary conditions given in Eqs. (1 and 2) to 

the integral weak form, introducing the interpolation equations Eqs. (7 and 12) and using the Galerkin 

method [45], the discrete form of governing equations can be represented as:  

RTTK =)(                                                                  (14) 

ñññ
GWW

G+W=W=

N

dqdfdTk TTT
NNxRBBxTK )(,

~~
),()(                             (15) 

Calculation of the conductivity matrix K  in Eq. (15) requires area integration over the problem domain 

W. This integration can be obtained by integration over entire IEs and internal parts of BIEs. On the other 

hand, assume constant thermal conductivity in each smoothing cell and note that the smoothed gradient 

matrix SB
~

 is also a constant matrix within each smoothing cell, the conductivity matrix K  can be 

obtained as follows: 
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( ) ( )ääää +=
BIE S

S
T
SSSS

IE S

S
T
SSSS ATkATk BBxBBxTK

~~
),(

~~
),()(                      (16) 

where SA , Sx  and ST  are area, centroidal coordinate and centroidal temperature of the internal part of 

the smoothing cell S, respectively. The most interesting feature of the foregoing approach is that the area 

integrals are converted to the line integrals along the edges of the smoothing cells. This feature facilitates 

the usage of NBFMs, because in these meshes the internal part of BIEs usually has a general polygonal 

shape and computation of area integrals is not so trivial. The other advantage of this method is the less 

sensitivity with respect to geometric shape of the elements, as no geometric mapping for integration is 

used [7]. 

In general, conductivity matrix K  is a function of temperature and Eq. (14) is a nonlinear system of 

algebraic equation. In the present work, the direct iteration method [45] is used for the iterative solution of 

this equation. In this method, the process is started from an initial guess, 
0

T , for the temperatures and 

updated according to the following scheme. 

RTTK =+1)( rr
                                                                   (17) 

where 
r

T  denotes the solution at r th iteration. The iteration is continued until the difference between 
r

T  

and 
1+r

T  reduces to an allowable error tolerance. 

 

4. FIREFLY ALGORITHM  

FA is a recently developed population based optimization algorithm which is inspired by the flashing 

behavior of fireflies [26]. In the FA each firefly is attracted to the brighter fireflies, and at the same time 

they move randomly. The attractiveness is proportional to the brightness of the flashing light which 

decreases with distance. Therefore, the attractiveness is evaluated in the eye of the other fireflies and the 

light absorption characteristic of the surrounding swill cause reduction of light intensity and the 

attractiveness of the fireflies. The attractiveness b can be defined as follows: 

2

0
re gbb -=                                                                     (18) 

The light absorption coefficient g can be considered as a constant representing a characteristic length 

scale of the problem. Initial light intensity 0b  is the attractiveness at 0=r . If the position of any two 

fireflies i and j is designed by ix  and 
jx  respectively, the Cartesian norm jir xx -=  represents the 

distance between these fireflies. The updating formula for relocating any firefly i which is attracted by a 

brighter firefly j is as follows: 

Ůxxxx ab +-+= )( iji
new
i                                                      (19) 

where the second term is due to the attraction, while the third term is random walk. a is the 

randomization parameter and Ů is a random vector within the search space. FA may share many 

similarities with PSO. In fact, it has been proved in [26] that when ¤­g , the FA will become an 

accelerated version of PSO, while when 0­g , the FA reduces to a version of random search algorithms. 

 

5. MODIFIED FIREFLY ALGORITHM  

In the present paper, three basic modifications are introduced in the original FA to improve its 

performance. These points are explained in detail in the following subsections. 
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a) Memory 

In many metaheuristic optimization algorithms there exists a kind of memory which transfers some 

information from one iteration to the other. For example, in PSO the particle best and also the global best 

positions are retained in each iteration. This information is then used in the next iteration for updating of 

the particles. As another example, in the genetic algorithm, the offspring inherit the genes from their 

parents and then transfer them to the next generation via crossover operator. In this point of view, the 

original FA suffers from lack of memory and no specific information is transferred from one iteration to 

the other. 

To further elucidate, consider a firefly which reaches a near optimum point in one iteration. This 

firefly will participate in the updating process to generate the next population. It will attract other fireflies 

but it has no more chance to do this in successive iterations because the position of this firefly will also be 

changed and its information lost. To overcome this point, it is necessary to let some high rank fireflies be 

transferred to the next iteration. In this approach, in each iteration, a number of the high rank fireflies (say 

m1) are directly transferred to the next iteration with no change in their position. To do this practically, in 

each iteration, the updating operator is not applied on the first m high rank fireflies and therefore the rest 

of them (n-m1 fireflies) participate in the updating process. This approach tends to fix the high rank 

fireflies and other fireflies explore the search space extensively for the global optimum point. 

b) Newborn fireflies 

Mutation operator is one of the cornerstones of the genetic algorithm. It prevents the algorithm from 

being trapped in local optimum points and plays the role of recovering the lost genetic materials. If 

crossover operator in the genetic algorithm is supposed to exploit the current solution to find better ones 

(intensification), mutation is supposed to help in the exploration of the whole search space 

(diversification). Therefore, the mutation operator maintains genetic diversity in the population and helps 

to escape from local minimum traps. 

Unfortunately, no such mechanism was designed in the original FA. As the second modification, a 

similar notion is introduced in the FA via adding newborn fireflies. To manage this, in each iteration, 

some new fireflies (say m2) are generated randomly within the search space and inserted into the 

population. To keep total number of fireflies constant it is necessary to remove m2 fireflies from the 

population, which is done by removing the low ranked ones. 

c) Updating formula 

The updating formula of the original FA, presented in Eq. (19), changes the position of each firefly 

towards all of the brighter fireflies in a stepwise manner regardless of the value of objective function of 

this firefly during these steps. For a better explanation, the reader is referred to Fig. 3 which schematically 

represents the updating path of a firefly in a two dimensional search space with 11 fireflies. In this figure, 

the fireflies are labeled according to their objective functions. For example, the fireflies 1 to 5 are brighter 

than the firefly 6. As it is shown, using Eq. (19), the firefly 6 changes its position repetitively toward the 

fireflies 1 to 5 and eventually reaches its final position. It is worth noting that the objective function is not 

reevaluated in each step where the position of this firefly changes. Therefore, relocation of this firefly is 

based on its objective at its initial position. As it is shown schematically in Fig. 3, it seems that this firefly 

is wandering and follows a zigzag updating path. This behavior of the original FA decreases the overall 

performance of the algorithm. 

To overcome this point, a simple updating formula is proposed to remove the wandering motion of 

the fireflies. In this approach, instead of moving each firefly toward the brighter ones in a stepwise 

manner, a representative point which shows the overall distribution of the brighter fireflies is defined at 
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first and then the firefly moves toward this point in only one step. In other words, the updating formula for 

any firefly i which is attracted by a set of brighter fireflies is proposed as follows: 

Ůxpxx ab +-+= )( iii
new
i                                                                  (20) 

where ip  is the representative point that shows the overall distribution of the brighter fireflies. Various 

ideas can be invoked to define this representative point ip . The simplest one, which is used here, is to 

define the coordinates of the point ip  as the average of the coordinates of the brighter fireflies as follows: 

ä
-

=
-

=
1

1
1

1
i

l

li
i

xp                                                                       (21) 

A schematic representation of the above updating formula is shown in Fig. 4. 

Based on the modifications described in the foregoing sections, a pseudo code is prepared and shown 

in Fig. 5. 

 
 

Fig. 3. Schematic representation of updating path of one firefly based on the original FA. The triangles 

 show position of a firefly during updating process. The solid circles are brighter fireflies  

and the hollow circles are the rest of them. 

 

 
 

Fig. 4. Schematic representation of updating path of one firefly based on the proposed updating formula.  

The solid circles are brighter fireflies and the hollow circles are the rest of them. The square 

 is the representative point of brighter fireflies 
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Define the upper bound U and lower bound L for the design variables 

Generate an initial population of fireflies xi (i=1 to n) 

Evaluate the response function Fi for each firefly xi 

Sort the fireflies based on their response function 

for t=1 to Maximum iteration 

  yi=xi (i=1 to n) 

  for i=m1 to n-m2 

   p=average of coordinates of fireflies which are brighter than xi 

   r=norm(xi-p) 

   )exp( 2

0 rgbb -³=  

   )()5.0( LUŮ -³-=rand  

   ŮxPxx ab +-+= )( iii  

  next i 

  Check the side constraints for firefly xi 

  for i=m2-k+1 to n 

   xi=L+rand×(U -L) 

  next i 

  Evaluate the response function Fi only for the updated fireflies 

  Sort the fireflies based on their response function 

  Present the first firefly as the best solution obtained in this iteration 

next t 

Fig. 5. Pseudo code of the proposed modified firefly algorithm 

 

6. CONSTRAINT HANDLING APP ROACH 

The most common approach in the metaheuristic optimization community to handle constraints is to use 

the penalty method. The basic idea of this method is to transform a constrained optimization problem into 

an unconstrained one by adding a certain value to the objective function based on the amount of constraint 

violation occurred in a certain solution. Such technique, which is known as the exterior penalty method, is 

one of the most popular methods of constraint handling in the evolutionary algorithms. A similar method 

is also used in the present work. 

If the optimization problem consists of minimization of cost function f  subjected to the inequality 

constraints )to1(,0 pigi =¢  and equality constraints )to1(,0 qihi == , then in the penalty function 

approach, the constraints can be combined with the cost function into a response functional F  defined as 

follows: 

ää
==

+ ++=
q

i

ii

p

i

ii hgfF
1

2

1

2)( ml                                                  (22) 

)0,max( ii gg =+                                                               (23) 

where 0>>il  and 0>>im  are the penalty coefficients. The penalty coefficients should be large enough 

to obtain a feasible solution and may depend on the specific optimization problem. By doing this, the 

constrained optimization problem is transformed into an unconstrained optimization problem which is 

simpler to solve. 

 

7. NUMERICAL EXAMPLES  

To evaluate the proposed method, five numeric examples are solved in this section. In the first two 

examples the material is considered as linear and homogeneous. In the third example, a nonlinear heat 

conduction with temperature dependent thermal conductivity is considered. In the fourth example, the 
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domain is divided into two zones and different thermal conductivity is assumed in each zone. In the last 

example, the shape of external boundary and also the dimensions of a high conductivity insert is obtained 

simultaneously. Each example is solved for different cases of allowable temperature and the results are 

presented. It must be noted that the SFGFEM is used as the direct solver and only a fixed NBFM is used to 

solve each example. In all of the following examples, the number of fireflies (n), number of high rank 

fireflies which are transferred to the next iteration (m1) and number of newborn fireflies (m2) are selected 

as n=20, m1=1 and m2=1, respectively. The algorithm is stopped after 100 iterations and totally 1900 

function evaluations are performed in each case to obtain the results. 

a) Example 1 

As the first numerical example, consider the conductive heat transfer in the space between two 

parallel circular pipes which is filled with a filler material. By considering a two dimensional and 

symmetric field, a schematic representation of a half of problem domain and boundary conditions is 

presented in Fig. 6. As shown in this figure, a uniform heat flux of 100=q  is considered in the internal 

surface of the left pipe (face BC) and a prescribed temperature of 0=T  is considered in the internal 

surface of the right pipe (face DE). The faces AB, CD and EF have symmetric boundary condition. The 

geometric shape of face AF is unknown, but, its boundary condition is considered as insulated. A constant 

thermal conductivity of 1=k  is considered for the entire domain. Finally, the shape optimization problem 

is defined as: determine the geometric shape of the face AF to minimize the volume (area, A, of the cross 

section) of the conductive material in such a way that the maximum field temperature 
maxT  remains under 

the predefined allowable temperature 
allT . 

 

 
Fig. 6. Heat conductive domain, boundary conditions and unknown boundary parameterization for example 1 

To solve this problem, the face AF is approximated using a cubic spline with seven key points. The 

coordinates of base points, components of direction vectors and lower and upper bounds of the shape 

parameters are presented in Table 1. As stated in Eq. (4), the coordinates of the key points can be defined 

using base points and direction vectors which are schematically shown in Fig. 6. A non-boundary-fitted 

mesh is generated based on the fixed boundaries and is shown in Fig. 7. The meshed area must be large 

enough to encompass the shape variations in the solution process. Three cases with different allT  are 

considered and the optimization problem is solved using the proposed algorithm in conjunction with the 

SFGFEM. The allowable temperature, allT , maximum temperature, maxT , and the domain area, A, are 

presented in Table 2 for each case. The obtained shapes of face AF are shown in Fig. 8 for each case and 

the temperature fields are also shown in Fig. 9. As presented in Table 2 the maximum temperatures are 

less than the allowable. It can also be seen that by decreasing the allowable temperature, more conductive 
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material is needed and its distribution tends to the left pipe. In other words, for a better protection against 

excessive temperature more conductive materials must be added near the left pipe. 

 
Table 1. Base points, direction vectors and lower and upper bounds of the 

 shape parameters considered in the example 1 

Key point Bx By ex ey rL rU 

1 0.0 0.0 1.000 0.000 0.350 0.600 

2 0.0 0.0 0.866 0.500 0.300 0.693 

3 0.0 0.0 0.500 0.866 0.173 0.693 

4 0.0 0.0 0.000 1.000 0.150 0.600 

5 0.0 0.0 -0.500 0.866 0.173 0.693 

6 0.0 0.0 -0.866 0.500 0.300 0.693 

7 0.0 0.0 -1.000 0.000 0.35 0.600 
 

Table 2. Different cases considered in the example 1 

Case Tall Tmax Area 

A 45 44.926 0.266 

B 55 54.845 0.155 

C 65 64.867 0.116 

 

 

 
Fig.7. Non-boundary-fitted mesh used in the solution of example 1 
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Fig. 8. Optimum shapes obtained for the example 1 
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Fig. 9. Temperature distribution based on the optimum shapes for the example 1 

b) Example 2 

In this example consider the conductive heat transfer in a filler material located between two parallel 

flat surfaces as shown schematically in Fig. 10. Also, consider that the position of point D is fixed whereas 

point C can be selected from any point on the right side wall. Assume a uniform heat flux of 100=q  is 

applied on the left surface (face AD) and the right surface (face BC) is maintained at the constant 

temperature of 0=T . By considering a two dimensional and symmetric field, only half of the problem 

domain is modeled and symmetric boundary condition is applied on the face AB. The boundary condition 

of face DC is considered as insulated while its geometric shape is unknown a priori. In this example, a 

linear and homogeneous material with unit thermal conductivity (1=k ) is considered and the shape 

optimization problem is defined as: determine the geometric shape of the unknown face DC to minimize 

the volume (area, A) of the filler material in such a way that the maximum field temperature maxT  remains 

smaller than a predefined allowable temperature allT . 

The unknown face DC is approximated by a cubic spline with five key points. The coordinates of 

base points, components of direction vectors and lower and upper bounds of the shape parameters are 

presented in Table 3 and shown in Fig. 10. A NBFM is generated based on the fixed boundaries and the 

meshed area must be large enough to encompass the shape variations in the solution process. Five cases 

with different allT  are considered and the optimization problem is solved using the proposed algorithm. 

The allowable temperature, allT , maximum temperature, maxT , and the domain area, A, are presented in 

Table 4 for each case. The obtained boundary shapes of face DC are shown in Fig. 11 for each case and 

the temperature fields are also shown in Fig. 12. The results show that decreasing the allowable 

temperature will cause point C to move upward and more conductive material will be required to satisfy 

the temperature limit. 
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Fig. 10. Heat conductive domain, boundary conditions and unknown boundary parameterization for example 2 
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Fig. 11. Optimum shapes obtained for the example 2 

 

 
Fig. 12. Temperature distribution based on the optimum shapes for the example 2 
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Table 3. Base points, direction vectors and lower and upper bounds of the 

 shape parameters considered in the example 2 

Key point Bx By ex ey rL rU 

1 4.0 0.0 0.0 1.0 1.0 4.0 

2 3.2 0.0 0.0 1.0 1.0 4.0 

3 2.4 0.0 0.0 1.0 1.0 4.0 

4 1.6 0.0 0.0 1.0 1.0 4.0 

5 0.8 0.0 0.0 1.0 1.0 4.0 
 

Table 4. Different cases considered in the example 2 

Case Tall Tmax Area 

A 200 199.912 10.759 

B 210 209.936 9.692 

C 220 210.859 8.819 

D 230 229.764 8.146 

E 240 238.854 7.633 

It is worth to note that a little wavy modes which can be observed in the boundary profiles in Fig. 11 

are due to oscillatory nature of cubic splines. These waves will be reduced by increasing the accuracy of 

optimizer e.g. by increasing the population size or number of generations. 

c) Example 3 

The main goal of the third example is to evaluate the method in solution of nonlinear heat conduction 

problems. Consider the conductive heat transfer between two parallel flat surfaces where the geometry and 

boundary conditions are similar to the previous example. The unknown boundary, number of key points, 

base points and direction vectors are also the same. The thermal conductivity is considered here as a 

function of field temperature as follows: 

50/1)( TTk +=                                                               (24) 

The shape optimization problem of the present example is solved for five cases with different allT . 

The allowable temperature, allT , maximum temperature, maxT , and the domain area, A, are presented in 

Table 5 for each case. The obtained boundary shapes of face DC are shown in Fig. 13 for each case and 

the temperature fields are also shown in Fig. 14. 
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Fig. 13. Optimum shapes obtained for the example 3 
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Fig. 14. Temperature distribution based on the optimum shapes for the example 3 

Table 5. Different cases considered in the example 3 

Case Tall Tmax Area 

A 140 139.769 4.888 

B 160 159.924 3.875 

C 180 179.395 3.259 

D 190 190.233 2.997 

E 200 199.819 2.793 

As mentioned in the previous example, a small wavy modes can be observed in the boundary profiles 

in Fig. 13 which are due to oscillatory nature of cubic splines. Increasing the accuracy of the optimizer 

will reduce these oscillations but the overall shape of the boundary will remain the same. 

d) Example 4 

In this example, the shape optimization problem for a zoned inhomogeneous domain is considered. 

Similar to the previous two examples, the conductive heat transfer between two parallel flat surfaces is 

also considered here and the geometry, boundary conditions, number of key points, base points and 

direction vectors are the same. As shown in Fig. 15, the domain is divided to two zones with different 

thermal conductivity 2.01=k  and 0.202 =k . 

The shape optimization problem of this example is also solved for four cases. The allowable 

temperature, allT , maximum temperature, maxT , and the domain area, A, are presented in Table 6 for each 

case. The obtained boundary shapes of face DC are shown in Fig. 16 for each case and the temperature 

fields are also shown in Fig. 17. As presented in Table 6 the maximum temperatures constraint is satisfied 

and by decreasing the allowable temperature, more conductive material is needed. In other words, for a 
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better protection against temperature rise more conductive materials must be added near heat source (left 

side wall). 

 
Fig. 15. Heat conductive domain, boundary conditions and unknown boundary parameterization for example 4 
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Fig. 16. Optimum shapes obtained for the example 4 

 

 
Fig. 17. Temperature distribution based on the optimum shapes for the example 4 
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Table 6. Different cases considered in the example 4 

Case Tall Tmax Area 

A 750 749.097 11.191 

B 800 800.014 7.794 

C 900 899.360 5.115 

D 1000 1000.045 3.953 

e) Example 5 

In the last example, consider a heat generating device which must be protected from increase in 

temperature by transferring heat to a heat sink. To do this, a heat conducting medium must be designed to 

efficiently transfer the heat to the heat sink. A schematic representation of half of the problem domain 

(due to symmetry) is shown in Fig. 18. Heat is generated in a circular region centered at point B and the 

heat sink is located at the right side boundary CD. To increase the heat transfer rate, a high conductivity 

part of the rectangular shape is inserted in the medium and attached to the heat sink. The size (a and b 

according to Fig. 18) of this insert is also considered as unknown and must be obtained in the optimization 

process. The thermal conductivity of the domain is considered as 0.11=k  except for the rectangular insert 

which is considered as 0.202=k . In the present example, the volume (area) of the rectangular insert is 

considered as constant value of 1.5. Therefore, the relation ab /5.1=  must be considered in the shape 

design problem. A uniform heat generation rate of 0.30=f  is considered over circular region and a 

prescribed temperature of 0=T  is considered for the heat sink (face CD). The face AC has symmetric 

boundary condition. In such circumstance, the shape optimization problem is defined as: determine the 

geometric shape of the face AD and dimension a of the insert to minimize the volume (area) of the 

conductive material in such a way that the maximum field temperature 
maxT  remains under the predefined 

allowable temperature 
allT . 

 
Fig. 18. Heat conductive domain, boundary conditions and unknown  

boundary parameterization for example 5 

To solve this problem, the face AD is approximated using a cubic spline with four key points. The 

coordinates of base points, components of direction vectors and lower and upper bounds of the shape 

parameters are presented in Table 7 and are also shown in Fig. 18. The bound constraint for the size of 

insert is 0.35.0 ¢¢a . A non-boundary-fitted mesh is generated based on the fixed boundaries and is 

shown in Fig. 19. The meshed area must be large enough to encompass the shape variations in the solution 

process. Four cases with different allT  are considered and the optimization problem is solved using the 

proposed algorithm in conjunction with the SFGFEM. The allowable temperature, allT , maximum 

temperature, maxT , insert size, a, and the area, A, are presented in Table 8 for each case. The obtained 

shapes of face AD are shown in Fig. 20 for each case and the temperature fields are also shown in Fig. 21. 
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It is observed that the shape parameter corresponding to key point 4 converges to its lower bound and size 

a of the insert converges to its upper bound. This means that a horizontal rectangular insert behaves better 

than a vertical rectangular insert and to protect against temperature rise more conductive materials must be 

placed near the insert. 

 
Fig. 19.Non-boundary-fitted mesh used in the solution of example 5 
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Fig. 20. Optimum shapes obtained for the example 5 

 

 
Fig. 21. Temperature distribution based on the optimum shapes for the example 5 

 
Table 7. Base points, direction vectors and lower and upper bounds of the  

shape parameters considered in the example 5 

Key point Bx By ex ey rL rU 

1 6.0 0.0 0.000 1.000 1.582 5.7 

2 3.0 0.0 0.000 1.000 2.545 5.7 

3 2.0 0.0 -0.707 0.707 3.041 5.1 

4 0.0 0.0 -1.000 0.000 1.400 3.0 
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Table 8. Different cases considered in the example 5 

Case Tall Tmax a Area 

A 65 64.999 3.000 29.340 

B 70 69.515 3.000 25.080 

C 75 74.727 3.000 20.986 

D 80 79.843 3.000 18.310 

 

8. CONCLUSION 

In the present work, the shape optimization problems in nonlinear heat conductions in inhomogeneous 

materials were considered. The boundary parameterization technique using splines was utilized to 

manipulate the variation of the domain boundary during the iterative process. Solution of direct problem is 

obtained using SFGFEM approach which is based on the non-boundary-fitted meshes. This method 

facilitates solution of variable domain problems since the mesh modification (or remeshing) is eliminated 

completely in the solution of direct problem. A modified version of the firefly algorithm is proposed here 

as the optimization algorithm in which three basic modifications were done to improve its performance. 

They were: adding memory, adding mutation and proposing a new updating formula. The memory stores 

valuable information in each iteration and transfers it to the next iteration. The mutation promotes 

diversification of the optimizer in searching of the entire solution space for potential optima. The proposed 

updating formula overcomes wandering motion of the fireflies. Some numerical examples were solved to 

evaluate the proposed method. In these examples, the effects of different boundary shapes, 

parameterizations and material properties on the solution of shape optimization problem were examined. It 

is believed that the use of the non-boundary-fitted meshes in conjunction with modified firefly algorithm 

simplified the solution of shape optimization problems and provides an effective engineering tool in 

thermal shape design problems. 
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