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Abstracti The present study is concerned with optimal shape determination of inhomogeneous
and temperature dependent domains under steady state heat condbutibnsituations are
important in many thermal design problems, especially in shape design of electronic components
and chips. In the present paper, we formulate the shape optimization problem based on volume
minimization of heat conductive material whiieniting maximum temperature. The smoothed
fixed grid finite element method which is a new approach based on théonoaaryfitted

meshes is used to obtain temperature field. The boundary parameterization technique using splines
is also adopted to manilate the shape variations. A modified version of the firefly algorithm
which is a recently developed metaheuristic optimization technique is proposed as the optimizer.
These modifications consist of adding memory, adding newborn fireflies and proposew a n
updating formula. To evaluate the applicability of the proposed method five numerical examples
are solved and the results are presented.

Keywordsi Shape optimization, nonlinear heat conduction, smoothed fixed grid finite element method,
metahee r i stic optimization, firefly algorithm

1. INTRODUCTION

In the electronic components and chips, heat generated by the electrical elements is spread over the entire
component by conduction and then transferred to the ambient via heat sinks or othes. dedceh
cases, design of the shape and size of the heat conducting medium have significant influence on the
cooling performance of the equipment. In other words, in addition to the amount of the generated heat, the
temperature distribution is dependemt the geometrical configuration of solid medium containing the
heating element. A poor design may result in increasing the temperature of the devices, and even cause
damage to the system components. Therefore, an optimal shape design for the complmfigitiyg
desirable and this is the problem considered in the present work.

Approximate (or numeric) solution of a Shape Optimization Problem (SOP) typically involves two
major parts. The first part is a direct problem solver which provides informatourn tife system behavior
under various geometrical conditions and the second is an optimization algorithm that leads to a
convergence of the iterative shape profile by updating the solutions. Therefore, SOPs can be categorized
as variable domain problems\vhich the domain geometry has to be modified in each iteration to fulfill
some requirements.

Among the several numerical methods used in the solution of the direct problem, the most appealing
one in the context of variable domain problems is the Bouritlament Method (BEM). In the BEM, the
domain discretization or mesh generation is not necessary, which makes BEM the most preferable method
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for SOPs [1]. However, BEM has some drawbacks which limit its application in some problems, e.g.
nonlinear on inhomgeneous materials. The other method is the Finite Element Method (FEM)Main
drawback of FEM is that the mesh must be modified whenever the geometry of the problem is changed [2]
and it is so cumbersome in variable domain problems. &ppeoach to deease FEM dependency on
conventional mesh is to use NBoundaryFitted Meshes (NBFM). By means of NBFMs in the analysis

of variable domain problems, the analysis cost reduces significantly since there is no need to modify the
mesh in iterations where thegblem geometry is changed. The Fixed Grid Finite Element Method
(FGFEM) [3 and 4] uses a fixed NBFM to perform a finite element analysis. In this method, the
homogenization technique developed in [5] (as used in [3]) or a technique based on numegiasibimte

(as used in [3]) is implemented to compute the element matrices. However, the homogenization procedure
decreases the solution accuracy whereas numerical integration increases computational togtse [4].
present work, theSmoothed Fixed Grid Fite Element Method (SFGFEM), which was previously
proposed by the author in [6] is used to obtain the solution of direct problem. This method is based on the
NBFMs and its main objective is to improve the accuracy of the formulation of the boundaryctirigrse
elements. To tackle this, the gradient smoothing technique is used to evaluate domain integrals over the
internal parts of the boundary intersecting elements. The gradient smoothing technique has been
previously used in the smoothed finite elementhoeé [7]. The most interesting feature of this technique

is simplification of integration over internal parts of the boundary intersecting elements. In the SFGFEM,
the domain integrals are transformed into line integrals over the edges of smoothingaehss awill

reduce the computational costs significantly. The SFGFEM has been previously used for the solution of
inverse geometry problems [6, 8 and 9], unconfined flow problems in porous domains [10 and 11] and
free surface potential flow problems [12].

Optimization appears in many real world problems and a considerable amount of work has been done
in developing efficient algorithms for solving optimization problems. Classical optimization algorithms
normally work well for smooth problems and use thedgmat information which is difficult to obtain. In
addition, the classical methods may converge to local optimum points. Thus, to overcome these
difficulties, the gradienfree algorithms may be preferred. One class of derivative free techniques consists
of nature inspired metaheuristic optimization algorithms. The vast majority of these algorithms have been
derived from the behavior of biological or physical systems in nature [13]. These techniques have
increased in popularity in recent years becauseaif ability to deal with complex optimization problems
which are otherwise difficult to solve. The most popular methods are genetic algorithm [14], evolutionary
strategies [15], evolutionary programming [16], particle swarm optimization [17], differemdlition
[ 18], ant colony optimization [19], honey bee alg
cuckoo search [23], hunting search [24], bat algorithm [25], firefly algorithm [26] and krill herd algorithm
[27]. Besides bio inspiredgorithms, there are nature inspired algorithms that mimic physical phenomena
such as simulated annealing [28], harmony search [29], bighigngunch [30], charged system search
[31], spiral optimization [32], biogeography based optimization [33], fegdkarning algorithm [34] and
ray optimization [35].

Firefly Algorithm (FA) is a recently developed, promising, metaheuristic optimization technique
originally proposed by [36]. The FA is based on
firefli es. Based on Yang' si nwofirnkdsi,n gt hteh eF Agliosb aM e royp téd 1
rates [26]. It is also shown, using various test functions, that the FA is superior to both PSO and GA in
terms of both efficiency and success rate dB9.6] . Fo
After first presentation of the FA in [36] some modifications were proposed by different researchers; for
example refer to [40, 41 and 42]. To continue this way, in the present work, some basic modifications are
introduced in the original FA to impve its performance [43 and 44]. These modifications consist of: i)
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adding a kind of memory to transfer some information obtained in each iteration to the next one, ii) adding
newborn fireflies to explore extensively the search space for global optimuntngmai iii) introducing a
new updating formula to reduce wandering motion of fireflies.

To evaluate the applicability of the proposed method in solution of SOPs five numerical examples are
solved and the results are presented. The results show that anatonbiof the SFGFEM and the
modified FA can be used effectively in the solution of shape optimization problems in heat conduction.
The remaining part of this article deals firstly with solution of direct problem using SFGFEM and is
followed by a brief relew of the basics of the FA and a detailed description of the proposed
modifications. After a brief note on the constraint handling approach, the numerical examples are solved
and the results are presented. Finally the article ends with conclusionseardaes.

2. SHAPE OPTIMIZATION IN HEAT CONDUCTION

In the SOPs, it is assumed that the geometric shape of some parts of the domain boundary isainknown
priori and must be obtained in the optimization processminimize/maximize objective function
subjeced to constraintsConsider a general steady state conductive heat transfer occurred on a bounded
domain W with boundarypW (refer to Fig. 1). Also, assume the domain consists of an inhomogeneous
material with tempeature dependent thermal conductivity. The temperature figlg) satisfies the
following governing equation and boundary conditions,

D Ak(x,T)DT(X)]+ f () =0 xi W @)
[ kxTPTM|B=0  xi G (2)
Tx)=T xi G (3)

where f(x) is the body heat generation density ak,T) is the thermal conductivity of the media
which, in general, is a function of position and temperat(fe.and G, are Neumann and Dirichlet
boundaries, respectivelyj and T are the prescribed heat flux and prescritedpterature, respectively

and N is the unit outward normal vector. For direct problems, the geometry of the domain is assumed to
be known and the temperature distribution over the entire problem domain can be determined directly. In
the SOPs, the shape of the boundégy (see Fig. 1) is unknowa-priori and must be determined in the
optimization process.

Unknown boundary 1,
approximated by spline

Neumann boundary T, Key points
T \ /
[T X,
N *
\ / .
_/
| / -/
|

X Q Basepoints and |
\ direction vectors ®—P-——#

\ /_j\v ]

Dirichlet boundary I,
=T
Fig. 1 Schematic representation of heat conductive domain, boundary conditions
and unknown boundary parameteatinn
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In order to obtain an approximate solution for SOP, the unknown boufgais parameterized by a
set of N, shape parameters (or design variables) and a solution is pursued in a finite dimensional search
space Each distinct point in this search space represents a candidate shépe Aodirect problem can
then be solved to obtain the corresponding temperature field. In the present work, the unknown boundary
is approximated by a cubic spé passed through a set of key points to form a smooth boundary. As
shown in Fig. 1, the location of each key pokat is represented using a base paxntand a direction
vector € as

X, =B, +re i=123 ,Np (4)

where N, is the number of key points arfil is the shape parameter corresponding tol thekey point.
In this work, the baspointsB, and direction vector®, are assumed constant and therefore the unknown
boundaryG, is parameterized based on the following unknown shape parameter Rector

P=[r,r, 2, er] 5)

The optimization problem in the present work is defined as searching for optimum distribution of
minimum amount of conductive material in such a manner that the temmgeoé the hottest point of the
domain remains below a specified allowable value. Therefore, the objective furfctisrdefined as the
area of the two dimensional domai{P) subjected to the following constraint.

9(P) =Tyax- Ty ¢ O (6)

whereT_,, and T,

all

are the maximum and allowable temperature, respectively.

3. SMOOTHED FIXED GRID FINITE ELEMENT METHOD

A typicd NBFM is shown in Fig. 2. The intersection of elements with boundaries produces three types of
elements, Internal Elements (IE), External Elements (EE) and Boundary Intersecting Elements (BIE). The
IEs and BIEs are used in the solution of direct problathare considered as active elements. The nodes
located on these active elements are also considered as active nodes.

External elements

Boundary intersecting
elements

Domain boundary

Internal elements

Element edges ® Active nodes
------------ Smoothing cell edges
Fig. 2 Classification of elements ambdesin a typical norboundaryfitted mesh and smoothing cells

Approximated temperature fiel@" over the active elements can be written in terms of temperatures
at the active nodes as:

TNX) =NT (7)

where N is the shape fuwtion vector andT is the nodal temperature vectdn. the SFGFEM, the
gradient smoothing technique is used to evaluate the gradient of the field variable. In this approach, each
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element is divided into smoothing cells and the gradeériield variable is obtained using a smoothing
operator [7]. The smoothing cells of IEs and BIEs are schematically presented in Fig. 2. Considering
PT" as the gradient of approximated temperature field, the smoothed temperaturet gregiierothing

cell S denoted byD T, can be defined as:

BTS = fPT" £ dW (8)
Ws

where Wy is the domain of smoothing ce$ and 75(x) is the smoothing kernel defined for cél.
Integration by parts for the right side of Eq. (8) leads to:

BTd =- f{T" Bfs dW+ f{T" £ n dG 9)
Ws G

where G is the boundary of smoothing ce8 and N is the unit outward normal vector dog. A
piecewise constant smoothing kernel is applied here as follows:

&l/ x1 W.
=t XV (10)
i0 X1 Wy

where Aq is the area of the smoothing céll. By substitution off5(x), the smoothed temperature
gradient over smoothing ce8 is obtaired as:

pTd -1 fiT" n dG (11)
As g
Note that in Eqg. (11) the gradient of the field variable is obtained via a line integration along the edges of

smoothing cell. Substituting Eqg. (7) in Eq. (11), theosthed temperature gradient at smoothing &ell
can be presented as:

PTI(x) =BT (12)

Bs=— fjn N dG (13)
G

1
As
where E‘S is the smoothed gradient matrix.

Now, converting the differential equation and natural boundary conditions given in Egs. (1 and 2) to
the integral weak form, introducing the interpolation equations Eqsnd713) and using the Galerkin
method[45], the discrete form of governing equations can be represented as:

K(T)T=R (14)

K(T)= fk(x T)B"BdW, R = (N"dwW+ fIN"dG (15)
w w Gy

Calculation of the conductivity matriX in Eq. (15) requires area integration over the problem domain

W. This integration can be obtained by integration over entire IEs and internal parts of BIEs. On the other
hand assume constant thermal conductivity in each smoothing cell and note that the smoothed gradient
matrix Bg is also a constant matrix within each smoothing cell, the conductivity mKtrigan be
obtained as follows:
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KM=8 & [kxeTs) ABLB)+A & (k(xs.Ts) A B Bs) (16)
IE S BIE S
where Ay, X5 and Tg are area, centroidal coordinate and centroidal temperature of the internal part of
the smoothing cellS, respectively. The most interesting feature of the foregoing approach is that the area
integrals are converted to the line integrals along the edges of the smoothing cells. This feature facilitates
the usage of NBFMs, because in these meshes the interhalf BEs usually has a general polygonal
shape and computation of area integrals is not so trivial. The other advantage of this method is the less
sensitivity with respect to geometric shape of the elements, as no geometric mapping for integration is
used[7].

In general, conductivity matriX is a function of temperature and Eq. (14) is a nonlinear system of
algebraic equation. In the present work, the direct iteration method [45] is used for the iterative solution of
this equation.r this method, the process is started from an initial guESs,for the temperatures and
updated according to the following scheme.

K(THT™ =R (17)
whereT' denotes the solution atth iteration. The iteration is continued until the difference betwieen
and T"* reduces to an allowable error tolerance.

4. FIREFLY ALGORITHM

FAisarecently developed population based optimizat

behavior of fireflies [26]. In the FA each firefly i :
they move randomly. The attractiveness is proportiondl tne br i ght ness of t he fl
decreases with distance. Therefore, the attractiv

light absorption characteristic of the surrounding swill cause reduction of light intensity and the
attractiveness of the fireflies. The attractivengsscan be defined as follows:

b=be? (18)

The | ight abs gcapleicasidered @asea tofistant eeprésenting a characteristic length
scale of the problem. Initial light intensity, is the attractiveness at=0. If the position of any two
fireflies i andj is designed byx, and x; respectively, the Cartesian norme x, - ;| represents the
distance between these fireflies. The updating formula for relocating any fisgHich is attracted by a
brighter fireflyj is as follows:

X('=x, +b(x; - x)+aU (19)
where the second term is due to the attraction, while the third term is random avalik. the
randomization parameter and is a random vector whin the search space. FA may share many
similarities with PSO. In fact, it has been proved in [26] that wigen & , the FA will become an
accelerated version of PSO, while whgn 0, the FA reduces to a version of randsearch algorithms.

5. MODIFIED FIREFLY ALGORITHM

In the present paper, three basic modifications are introduced in the original FA to improve its
performance. These points are explained in detail in the following subsections.
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a) Memory

In many metaheuriie optimization algorithms there exists a kind of memory which transfers some
information from one iteration to the other. For example, in PSO the particle best and also the global best
positions are retained in each iteration. This information is thed imsthe next iteration for updating of
the particles. As another example, in the genetic algorithm, the offspring inherit the genes from their
parents and then transfer them to the next generation via crossover operator. In this point of view, the
original FA suffers from lack of memory and no specific information is transferred from one iteration to
the other.

To further elucidate, consider a firefly which reaches a near optimum point in one iteration. This
firefly will participate in the updating procgso generate the next population. It will attract other fireflies
but it has no more chance to do this in successive iterations because the position of this firefly will also be
changed and its information lost. To overcome this point, it is necessiatysmme high rank fireflies be
transferred to the next iteration. In this approach, in each iteration, a number of the high rank fireflies (say
my) are directly transferred to the next iteration with no change in their position. To do this practically, in
each iteration, the updating operator is not applied on thenfirégh rank fireflies and therefore the rest
of them (-my fireflies) participate in the updating process. This approach tends to fix the high rank
fireflies and other fireflies explore tlsearch space extensively for the global optimum point.

b) Newborn fireflies

Mutation operator is one of the cornerstones of the genetic algorithm. It prevents the algorithm from
being trapped in local optimum points and plays the role of recovering sheydoetic materials. If
crossover operator in the genetic algorithm is s
(intensification), mutation is supposed to help in the exploration of the whole search space
(diversification). Therefore he mutation operator maintains genetic diversity in the population and helps
to escape from local minimum traps.

Unfortunately, no such mechanism was designed in the original FA. As the second modification, a
similar notion is introduced in the FA via addi newborn fireflies. To manage this, in each iteration,
some new fireflies (sayn,) are generated randomly within the search space and inserted into the
population. To keep total number of fireflies constant it is necessary to remofieeflies from the
population, which is done by removing the low ranked ones.

¢) Updating formula

The updating formula of the original FA, presented in Eq. (19), changes the position of each firefly
towards all of the brighter fireflies in a stepwise manner regardles® afalbe of objective function of
this firefly during these steps. For a better explanation, the reader is referred to Fig. 3 which schematically
represents the updating path of a firefly in a two dimensional search space with 11 fireflies. In this figure,
the fireflies are labeled according to their objective functions. For example, the fireflies 1 to 5 are brighter
than the firefly 6. As it is shown, using Eg. (19), the firefly 6 changes its position repetitively toward the
fireflies 1 to 5 and eventuallgaches its final position. It is worth noting that the objective function is not
reevaluated in each step where the position of this firefly changes. Therefore, relocation of this firefly is
based on its objective at its initial position. As it is shoaimesnatically in Fig. 3, it seems that this firefly
is wandering and follows a zigzag updating path. This behavior of the original FA decreases the overall
performance of the algorithm.

To overcome this point, a simple updating formula is proposed to rethewsandering motion of
the fireflies. In this approach, instead of moving each firefly toward the brighter ones in a stepwise
manner, a representative point which shows the overall distribution of the brighter fireflies is defined at
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first and then theifefly moves toward this point in only one step. In other words, the updating formula for
any fireflyi which is attracted by a set of brighter fireflies is proposed as follows:

X" =x. + b(p, - x;) +al (20)

where p, is the representative point that shows the overall distribution of the brighter fireflies. Various
ideas can be invoked to define this representative gminfThe simplest one, which is usedré, is to
define the coordinates of the poit as the average of the coordinates of the brighter fireflies as follows:
1 i
Pi=—axX (21)
-1
A schematic repsentation of the above updating formula is shown in Fig. 4.
Based on the modifications described in the foregoing sections, a pseudo code is prepared and shown
in Fig. 5.

Final position
|

Initial [;[]Siti()ﬂ
Fig. 3 Schematic representation of updating path of one firefly based on theabFRé. The triangles

show position of a firefly during updating process. The solid circles are brighter fireflies
and the hollow circles are the rest of them.

e

O
~
e
w
[ ]

Final position | 4

_— Ef)dating path

Initial position
Fig. 4 Schematic representation of updating path of one firefly based on the propdatidgiformula.

The solid circles are brighter fireflies and the hollow circles are the rest of them. The square
is the representative point of brighter fireflies
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Define the upper bound U and lower bound L for the design variables
Generate an initiapopulation of fireflies x(i=1 to n)
Evaluate the response functionfér each firefly x
Sort the fireflies based on their response function
for t=1 to Maximum iteration
Yi=Xi (|:1 to n)
for i=m, to nrm,
p=average of coordinates of fireflies whiare brighter than x
r=norm(x-p)
b= bo3 eXp('gz)
0= (rand- 0.5)3 (U- L)
X, =X, +b(P- x,)+al
nexti
Check the side constraints for firefly x
for i=my,-k+1 to n
x=L+randx(U -L)
nexti
Evaluate the response functiondrly for the updated fireflies
Sort the fireflies based on their response function

Present the first firefly as the best solution obtained in this iteration
nextt

Fig. 5 Pseudo code of the proposed modified firefly algorithm

6. CONSTRAINT HANDLING APP ROACH

The most common approach in the metaheuristic optimization community to handle constraints is to use
the penalty method. The basic idea of this method is to transform a constrained optimization problem into
an unconstrained one by adding a certaloevéo the objective function based on the amount of constraint
violation occurred in a certain solution. Such technique, which is known as the exterior penalty method, is
one of the most popular methods of constraint handling in the evolutionary algorghsimilar method

is also used in the present work.

If the optimization problem consists of minimization of cost functibnsubjected to the inequality
constraints g, ¢ 0, (i =1top) and equality constraint$y =0, (i =1toq), then in the penalty function
approach, the constraints can be combined with the cost function into a response fukctbreafi n e d a s
follows:

p q
F=f+&/i(g")*+Qq mh’ (22)
i=1 i=1
g =maxg;,0) (23)
where/, > ® and m> 0 arethepenaltg oef f i ci ents. The penalty coeffic

to obtain a feasible solution and may depend on t
constrained optimization problem is transformed into an unconstrained optimization probtgmiswh
simpler to solve.

7. NUMERICAL EXAMPLES

To evaluate the proposed method, five numeric examples are solved in this section. In the first two
examples the material is considered as linear and homogeneous. In the third example, a nonlinear heat
condution with temperature dependent thermal conductivity is considered. In the fourth example, the
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domain is divided into two zones and different thermal conductivity is assumed in each zone. In the last
example, the shape of external boundary and also thendions of a high conductivity insert is obtained
simultaneously. Each example is solved for different cases of allowable temperature and the results are
presented. It must be noted that the SFGFEM is used as the direct solver and only a fixed NBFk is used
solve each example. In all of the following examples, the number of firefljesi§mber of high rank

fireflies which are transferred to the next iteratiom)(and nhumber of newborn fireflies) are selected
asn=20, my=1 and my=1, respectively. Té algorithm is stopped aftdi00 iterations and totallyi900

function evaluations are performed in each case to obtain the results.

a) Example 1

As the first numerical example, consider the conductive heat transfer in the space between two
parallel circula pipes which is filled with a filler material. By considering a two dimensional and
symmetric field, a schematic representation of a half of problem domain and boundary conditions is
presented in Fig. 6. As shown in this figure, a uniform heat flug ofLO0 is considered in the internal
surface of the left pipe (face BC) and a prescribed temperatute=ad is considered in the internal
surface of the right pipe (face DE). The faces AB, CD and EF have symmetric bouonditjon. The
geometric shape of face AF is unknown, but, its boundary condition is considered as insulated. A constant
thermal conductivity ofk =1 is considered for the entire domain. Finally, the shape optimization problem
is defined a: determine the geometric shape of the face AF to minimize the volumeAaoédhe cross
section) of the conductive material in such a way that the maximum field temperaturemains under
the predefined allowable temperatdrs, .

Unknown boundary TJ"‘

Key points

A B C D E F

Fig. 6. Heat conductive domailn, bOEI?]daI’)l/ cor?dzitions! anduﬁznkn()‘wn boundary parameterization for example 1

To solve this problem, the face AF is approximated using a cubic spline with seven key points. The
coordinates of base pointspraponents of direction vectors and lower and upper bounds of the shape
parameters are presented in Table 1. As stated in Eq. (4), the coordinates of the key points can be defined
using base points and direction vectors which are schematically shown & Bighonboundaryfitted
mesh is generated based on the fixed boundaries and is shown in Fig. 7. The meshed area must be large
enough to encompass the shape variations in the solution process. Three cases with Tjffeaeat
consideed and the optimization problem is solved using the proposed algorithm in conjunction with the
SFGFEM. The allowable temperaturg,, , maximum temperaturer, ., and the domain ared, are
presented in Table 2 for eachse. The obtained shapes of face AF are shown in Fig. 8 for each case and
the temperature fields are also shown in Fig. 9. As presented in Table 2 the maximum temperatures are
less than the allowable. It can also be seen that by decreasing the all@nwgi#eature, more conductive
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material is needed and its distribution tends to the left pipe. In other words, for a better protection against
excessive temperature more conductive materials must be added near the left pipe.

Table 1 Base points, directionectors and lower and upper bounds of the
shape parameters considered in the example 1

Key point B, B, e e r ru
1 0.0 0.0 1.000 | 0.000 | 0.350 | 0.600
2 0.0 0.0 0.866 | 0.500 | 0.300 | 0.693
3 0.0 0.0 0.500 | 0.866 | 0.173 | 0.693
4 0.0 0.0 0.000 1.000 | 0.150 | 0.600
5 0.0 0.0 -0.500 | 0.866 | 0.173 | 0.693
6 0.0 0.0 -0.866 | 0.500 | 0.300 | 0.693
7 0.0 0.0 -1.000 | 0.000 0.35 0.600

Table 2 Different cases considered in the example 1

Case Tan iz Area
A 45 44,926 0.266
B 55 54.845 0.155
C 65 64.867 0.116
T T T T T T T T T T T T T T T T T T T T T T T T
Lttt et T Ty Tt
’—__._ \Hlltl'll'![\‘“W‘Il\Hl\lll\lIl
ﬂ LH\\HH |

[

I

|
I

R
Fig.7. Non-boundaryfitted mesh used in the solution of example 1

——Case A
——Case B
——Case C

05 04 03 02 01 0 01 02 03 04
Fig. 8 Optimum shapes obtained for the example 1
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Fig. 9 Temperature distribution based on the optimum shapes for the example 1

b) Example 2

In this example consider the conductive heat transfarfiller material located between two parallel
flat surfaces as shown schematically in Fig. 10. Also, consider that the position of point D is fixed whereas
point C can be selected from any point on the right side wall. Assume a uniform heat fux100 is
applied on the left surface (face AD) and the right surface (face BC) is maintained at the constant
temperature ofT =0. By considering a two dimensional and symmetric field, only half of the problem
domain is moded and symmetric boundary condition is applied on the face AB. The boundary condition
of face DC is considered as insulated while its geometric shape is unknpuiori. In this example, a
linear and homogeneous material with unit thermal conductiity=1) is considered and the shape
optimization problem is defined as: determine the geometric shape of the unknown face DC to minimize
the volume (area) of the filler material in such a way that the maximum field temperaferemains
smaller than a predefined allowable temperatiye.

The unknown face DC is approximated by a cubic spline with five key points. The coordinates of
base points, components of direction vectors and lower and uppedsbotithe shape parameters are
presented in Table 3 and shown in Fig. 10. A NBFM is generated based on the fixed boundaries and the
meshed area must be large enough to encompass the shape variations in the solution process. Five cases
with different T, are considered and the optimization problem is solved using the proposed algorithm.
The allowable temperaturd,,, , maximum temperaturef, ., and the domain ared, are presented in
Table 4 for eachase. The obtained boundary shapes of face DC are shown in Fig. 11 for each case and
the temperature fields are also shown in Fig. 12. The results show that decreasing the allowable
temperature will cause point C to move upward and more conductive matdrizg required to satisfy
the temperature limit.
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Table 3 Base points, direction vectors and lower and upper bounds of the
shape parameters considered in the example 2

Key point B, B, ey g r ru
1 4.0 0.0 0.0 1.0 1.0 4.0
2 3.2 0.0 0.0 1.0 1.0 4.0
3 2.4 0.0 0.0 1.0 1.0 4.0
4 1.6 0.0 0.0 1.0 1.0 4.0
5 0.8 0.0 0.0 1.0 1.0 4.0

Table 4 Different cases considered in the example 2

Case Tan Viizesz Area
A 200 199.912 10.759
B 210 209.936 9.692
C 220 210.859 8.819
D 230 229.764 8.146
E 240 238.854 7.633

It is worth to note that a little wavy modes which can be observed in the boundary profiles in Fig. 11
are due to oscillatory nature of cubic splines. These waves will be reduced by increasing the accuracy of
optimizer e.g. by increasing the population size ormemof generations.

c) Example 3

The main goal of the third example is to evaluate the method in solution of nonlinear heat conduction
problems. Consider the conductive heat transfer between two parallel flat surfaces where the geometry and
boundary condibns are similar to the previous example. The unknown boundary, number of key points,
base points and direction vectors are also the same. The thermal conductivity is considered here as a
function of field temperature as follows:

K(T)=1+T/50 (24)

The shape optimization problem of the present example is solved for five cases with diffgrent
The allowable temperaturd,,, , maximum temperaturef, ., and the domain ared, are presented in
Table 5 for each case. The obtained boundary shapes of face DC are shown in Fig. 13 for each case and
the temperature fields are also shown in Fig. 14.
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Fig. 13 Optimum shapes obtained foetbxample 3
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Table 5 Different cases considered in the example 3

Case Tan e Area
A 140 139.769 4.888
B 160 159.924 3.875
C 180 179.395 3.259
D 190 190.233 2.997
E 200 199.819 2.793

As mentioned in the previous example, a small wavy modes can be observed in the boundary profiles
in Fig. 13 which are due to oscillatory nature of cubic splines. Increasing the accuracy of the optimizer
will reduce these oscillations bilte overall shape of the boundary will remain the same.

d) Example 4

In this example, the shape optimization problem for a zoned inhomogeneous domain is considered.
Similar to the previous two examples, the conductive heat transfer between two patafiatffices is
also considered here and the geometry, boundary conditions, number of key points, base points and
direction vectors are the same. As shown in Fig. 15, the domain is divided to two zones with different
thermal conductivityk, =0.2 and k, = 200.

The shape optimization problem of this example is also solved for four cases. The allowable
temperatureT,, , maximum temperature, ., and the domain are4, are presented in Table érfeach
case. The obtained boundary shapes of face DC are shown in Fig. 16 for each case and the temperature
fields are also shown in Fig. 17. As presented in Table 6 the maximum temperatures constraint is satisfied
and by decreasing the allowable tempamt more conductive material is needed. In other words, for a
October2015 IJST, Transactiors of Mechanical Engineering, Volume @ Number M2
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better protection against temperature rise more conductive materials must be added near heat source (left
side wall).

Unknown boundary
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Fig. 15 Heat conductive domain, boundary conditions and unknown boupdeaayneterization for example 4
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Fig. 16 Optimum shapes obtained for the example 4

700 A

600
550
500
450
400
350
B 300| 5
250
200
150

L[]

[TT] [ 1]
]
7§(/I;::C\J *KCaseD
950
900
850 850
800 800
750 750
700 700
650 650
600 600
550 550
500 500
i 450 450
400 400
350 ~] 350
300 il 300
250 I 250
200 200
150 150
100 100
50 50

Fig. 17. Temperature distribution based on the optimum shapes for the example 4

IJST, Transactiors of Mechanical Engineering, Volume 8, Number M2 October2015



Optimal shape design for heat conduction usiihg 383

Table 6 Different cases considered in the example 4

Case Tan iiess Area
A 750 749.09 11.191
B 800 800.014 7.794
C 900 899.360 5.115
D 1000 1000.045 3.953

e) Example 5

In the last example, consider a heat generating device which must be protected from increase in
temperature by transferring heat to a heat sink. To do this, a heaictiogdnedium must be designed to
efficiently transfer the heat to the heat sink. A schematic representation of half of the problem domain
(due to symmetry) is shown in Fig. 18. Heat is generated in a circular region centered at point B and the
heat sink $ located at the right side boundary CD. To increase the heat transfer rate, a high conductivity
part of the rectangular shape is inserted in the medium and attached to the heat sink. Bhaensibe (
according to Fig. 18) of this insert is also consideas unknown and must be obtained in the optimization
process. The thermal conductivity of the domain is considerég-a$.0 except for the rectangular insert
which is considered ak, =200. In the present example, the voleirtarea) of the rectangular insert is
considered as constant value 106. Therefore, the relatiold =1.5/a must be considered in the shape
design problem. A uniform heat generation rate fof 300 is considered over circulaegion and a
prescribed temperature af =0 is considered for the heat sink (face CD). The face AC has symmetric
boundary condition. In such circumstance, the shape optimization problem is defined as: determine the
geometric shape of theade AD and dimensioa of the insert to minimize the volume (area) of the
conductive material in such a way that the maximum field temperafyreremains under the predefined
allowable temperaturg,, .

Unknown
boundary

Key points

® kg % o
A g\ N ) IJ@
B C
\ 6.0 (
Heat generating region High conductivity region

Fig. 18 Heatconductive domain, boundary conditions and unknown
boundary parameterization for example 5

To solve this problem, the face AD is approximated using a cubic spline with four key points. The
coordinates of base points, components of direction vectorsoarat bnd upper bounds of the shape
parameters are presented in Table 7 and are also shown in Fig. 18. The bound constraint for the size of
insert is0.5¢ac¢ 3.0. A nonboundaryfitted mesh is generated based on the fixed boundaries and is
shownin Fig. 19. The meshed area must be large enough to encompass the shape variations in the solution
process. Four cases with differen, are considered and the optimization problem is solved using the
proposed algorithm in conjunctionitv the SFGFEM. The allowable temperaturg,,, maximum
temperature;T insert sizea, and the aread, are presented in Table 8 for each case. The obtained

max !

shapes of face AD are shown in Fig. 20 for each casehenémperature fields are also shown in Fig. 21.
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It is observed that the shape parameter corresponding to key point 4 converges to its lower bound and size
a of the insert converges to its upper bound. This means that a horizontal rectangular insestbmtterve

than a vertical rectangular insert and to protect against temperature rise more conductive materials must be
placed near the insert.
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Fig. 20 Optimum shapes obtained for theaenple 5
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Fig. 21 Temperature distribution based on the optimum shapes for the example 5

Table 7 Base points, direction vectors and lower and upper bounds of the
shape parameters considered in the example 5

Key point B, B, e, e r. ry
1 6.0 0.0 0.000 1.000 1.582 5.7
2 3.0 0.0 0.000 1.000 2.545 5.7
3 2.0 0.0 -0.707 0.707 3.041 5.1
4 0.0 0.0 -1.000 0.000 1.400 3.0

IJST, Transactiors of Mechanical Engineering, Volume 8, Number M2

October2015



Optimal shape design for heat conduction usiihg 38t

Table 8 Different cases considered in the example 5

Case Tan Viiess a Area
A 65 64.999 3.000 29.340
B 70 69.515 3.000 25.080
C 75 74.727 3.000 20.986
D 80 79.843 3.000 18.310

8. CONCLUSION

In the present work, the shape optimization problems in nonlinear heat conductions in inhomogeneous
materials were considered. The boundary parameterization technique using splines was utilized to
manipulate the variation of the domain boundary during the iterative process. Solution of direct problem is
obtained using SFGFEM approach which is based on thebmamdaryfitted meshes. This method
facilitates solution of variable domain problems sitiee mesh modification (or remeshing) is eliminated
completely in the solution of direct problem. A modified version of the firefly algorithm is proposed here
as the optimization algorithm in whighree basic modifications were done to improve its pefdoica.

They were: adding memory, adding mutation and proposing a new updating formula. The memory stores
valuable information in each iteration and transfers it to the next iteration. The mutation promotes
diversification of the optimizer in searching oétantire solution space for potential optima. The proposed
updating formula overcomes wandering motion of the fireflizsne numerical examples were solved to
evaluate the proposed method. In these examples, the effects of different boundary shapes,
paraneterizations and material properties on the solution of shape optimization problem were examined. It
is believed that the use of the Aboundaryfitted meshes in conjunction with modified firefly algorithm
simplified the solution of shape optimization piems and provides an effective engineering tool in
thermal shape design problems.
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