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Abstract— In this paper, vibration suppression and control of a smart flexible satellite
maneuvering in a circular orbit are studied. The satellite is considered as a rigid hub and two
flexible appendages with PZT (lead zirconate titanate) layers attached on them as sensors and
actuators. Flexible satellite governing equations of motion are obtained using Lagrange-Rayleigh-
Ritz technique and assumed mode method; these dynamic equations of motion of the flexible
satellite are nonlinear and coupled. A thorough look at the resulting equations reveals that the
flexible satellite dynamics that include the appendage vibrations and its rigid maneuver occur in
two different time scales. Therefore, the dynamics of the flexible satellite can be divided into two
fast and slow subsystems using the singular perturbation theory. The slow and fast subsystems are
associated with rigid maneuver and appendages vibrations, respectively. A hybrid controller is
proposed which consists of an adaptive inverse dynamics for slow subsystem maneuvering control,
and a Lyapunov based controller for vibration suppression of the fast subsystem. Use of adaptive
controller allows us to cope with parameters uncertainty for the rigid motion of the system. Using
the Lyapunov approach the stability of these hybrid controllers is studied. Finally, the whole
system is simulated and the simulation results show the effective performance of the proposed
hybrid controller.

Keywords— Smart flexible satellite, orbital maneuver, adaptive inverse dynamics control, singular perturbation
theory, active vibration

1. INTRODUCTION

For several reasons a satellite must be able to re-orient and perform tracking maneuvers. These maneuvers
will cause certain levels of vibrations to flexible appendages. Many researchers have studied dynamics
and control of spacecrafts having space maneuvers [1-5].

Some researchers investigated the control of satellite maneuver and appendage vibration. Hu [6]
designed an adaptive back stepping controller for flexible spacecraft attitude maneuver and elastic
vibration control. This controller takes into consideration the bounds on angular velocity. A fault-tolerant
adaptive back stepping sliding mode control scheme was developed for flexible spacecraft attitude
maneuvering using redundant reaction wheels in the presence of parametric uncertainty disturbances and
unknown faults by Jiang et al [7]. Erdong and Zhaowei [8] studied an attitude regulation control using
passivity-based technique for maneuvering flexible spacecraft. In the above studies no smart materials
were used to suppress the vibration of the spacecraft appendages.

Many studies have been conducted when smart materials and piezoelectric layers are used as sensors
and actuators for active vibration suppression of spacecraft flexible appendages. Li and Bainum [9]
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applied the so-called momentum exchange feedback control and distributed piezoelectric actuator
technology for the vibration control of a flexible spacecraft; they considered satellite as a rigid hub with
cantilever flexible beam appendage which could undergo a single axis rotation. Hu and Ma designed a
generalized control scheme based on the variable structure output feedback and active vibration control
techniques using piezoceramics attached on the panel for the large angle attitude maneuver control of
flexible spacecraft [10]. Also, they studied the vibration control of flexible spacecraft during attitude
maneuver. The variable structure output feedback control was used to determine the flywheel torque for
maneuver control and piezoelectric materials for active vibration suppression [11]. Hu [12] proposed a
generalized scheme based on the sliding mode and active vibration control techniques for a flexible
spacecraft equipped with piezoelectric layers. He used a simplified model for the large angle attitude
maneuver. Qiu et al [13] presented the theoretical analysis and experimental results of active vibration
suppression of a smart flexible cantilever plate. To decouple the bending and torsional vibration for
measuring and driving, gyroscope and PZT patches were used as sensors and actuators by utilizing
optimal placement. Azadi et al [14] applied an adaptive-robust control scheme to control the maneuver of
a flexible satellite while suppressing the vibrations of the appendages. They used the piezoelectric layers
as actuators. Also, Azadi [15] used a robust passivity based control to control the maneuver of the satellite
and suppress the appendages vibration.

In some researches the spacecrafts are considered in a circular orbit, in order to control their orbital
maneuver and vibration suppression, the effects of their motion in the orbit have to be considered. Singh
and Zhang [16] designed an adaptive control system for a single axis rotational maneuver and vibration
suppression of an orbiting spacecraft with flexible appendages. For synthesis of the control law, only the
pitch angle was used for feedback. Hui et al [17] considered the control of entire-formation maneuvering
in low-thrust Earth-orbiting spacecraft formation flying (SFF). In their study each spacecraft was modeled
as a point mass. Maganti and Singh [18] designed a simple adaptive control system for the rotational
maneuver around one axis of an orbiting spacecraft with flexible appendage. They considered a linear
approximated model by ignoring the orbiting effects and other nonlinearities. Dong et al [19] applied an
adaptive fuzzy sliding mode controller for the networked control systems with nonlinear and uncertain
parameters during the flexible spacecraft slew maneuver. The spacecraft moved in a circular orbit. They
reduced and decomposed the dynamics equations of the spacecraft into three single-input subsystems. Hu
et al. [20] investigated a robust nonlinear control design under the constraints of assigned velocity and
actuator torque for attitude stabilization of a rigid spacecraft. In these studies, vibration suppression is not
directly considered; so, there is no use of smart materials for stabilization of vibration of the appendages.

In this paper the nonlinear governing equations of motion of a flexible satellite with piezoelectric
layers are derived and no simplification or reduction is applied to these equations. The satellite is
considered as a rigid hub with two flexible appendages with attached piezoelectric layers. The spacecraft
rotates in circular orbit with constant speed and has pitch angle rotation maneuver. The piezoelectric
layers are used as actuator and sensor to suppress vibration of panels. Also, the hybrid adaptive inverse
dynamics/Lyapunov control is designed to control spacecraft maneuver and vibration suppression of
panels together. This adaptive control scheme is robust against parameter uncertainties. Finally, the
simulation results show the effectiveness and performance of controller.

2. SYSTEM DYNAMICS
a) Governing equations

In this study we consider a spacecraft with a rigid hub and two flexible appendages. The piezoelectric
layers are attached to the appendages (see Fig. 1). Each appendage is proposed as a cantilever beam with
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length L, width b, thickness t,, density p, Young's modulus E and momentum of inertia I. The
thickness of each piezoelectric layers is t,, the density is p,, Young's modulus is E ;, width b and the
equivalent piezoelectric coefficient is shown by €,,. The lateral deflection of each point of the ith
appendage is denoted by w; (x). Each pair of piezoelectric layers is attached on opposite sides of the
appendage from X, to X, (n=12,..,N), where N is the number of piezoelectric layers. XYZ is an
earth-center inertial reference frame such that XZ is the orbit plane. The origins of the coordinate frames
X;¥;Z; (1 =12) are attached to the hub center. We consider the spacecraft moving in a circular orbit with
constant angular speed € ; it also has a rotational maneuver around its z, axis with angular speed of v,

see Fig. 1.
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Fig. 1. Schematic view of the spacecraft in orbit and its coordinates
The velocity of an appendage element v, can be determined by using the following equation:
Vg =Vp +Vga T OXIg 1)

v, is the hub velocity and vy, , is relative velocity of point B with respect to the rigid hub. @ is the
vector of hub's angular velocity, rg,, is the position vector. v,, Vg, ., @ and rg,, are obtained by the
following equations:

VAIRQK, VB/A:W]Z,w:g/)I21+Qf, I’B/AZXi\2+W]2 (2)
where ( | ) means %(). Now one can obtain velocity of point B as:

Vi =W+ 2Wyx + 1 ° X2 + i °w® + R?Q% + 2RQ*weosy — 2RQxsiny +

3
Q’W? cos® i + Q*x? sin® i — 2Q*wxcosy siny )
The kinetic energy of the panels, hub and piezoelectric layers can be obtained as:
2
T =Topp + Ty +Tomr =%ptabz [vadx+
a=1 app, 4)
1 2v2 1, 21 2 w2 1 2 o2 1 2B 2
(EM"R Q +§Ihzl// +§|hyQ sin l//+§|th cos ://)+Epptpbz Idex

a=1 n=1 p 7Ty
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where M is hub's mass, Ihx, I, , and Ihz are hub moments of inertia around Xx,, y,, and z, axes,
respectively. N, is the number of piezoelectric layers on ath appendage.

We consider each appendage as a Euler- Bernoulli beam, so the displacement field of the beam can be
written as [21]:

ow, (x,t)
OX
where w, (x,t) and u,, (X,t) are the displacements in y direction and longitudinal x direction of the

i th appendage in X,Y,z, coordinate frame, respectively. The strain &, and stress o, in the appendages
are as follows [21]:

U, (X, t)=-y a=12 (5)

2w, (x,t) o°w, (x,t)
£, :_an—Z’ o, :—Eyéx—z, a=12 (6)

The stress in piezoelectric layers can be expressed as [22], [23]:

2
Pn
2
X

o, =-E, vy

XPn

-e,,E, n=1.N ()

where the subscript p, represents the nth piezoelectric layer and EZn = vn/hpn (n=1...N) is the
electric field in the nth piezoelectric layer. The first and second terms on the right hand side of Eq. (7) are
the stresses due to the mechanical and electrical effects of the piezoelectric layers, respectively.

On the other hand, the potential energy of the panel and piezoelectric layers are:

=—ZjE( Paye gy

a=l app,
1 o*w
U,y :EZ j y( p") dv+z Iye31E v —2dv (8)
n=1 pzT, n=1 pzT,

+23 [E,dav

n=1pzT,

where y is the axis perpendicular to the piezoelectric surface, and d, is the electric displacement for the
nth patch. The electric displacement is:
Vv
dy=&p 1~ (9)
wherein &, is the dielectric constant of the piezoelectric material which forms the nth patch. The last term
inEq. (8) i |s the electric energy stored in the piezoelectric material.

The equation of motion and boundary conditions will be derived using Lagrange’s method which
may be expressed as: [24], [25]

d T T U
——[a J—a + 28 -q (10)

o¢ ) o¢ ¢
where U =U_  +Up;r and T =T, + Ty, + T, are strain energy and Kinetic energy, respectively, and
Q is the generalized force. ¢ refers to the vector of generalized coordinates consisting of satellite

rotation angles and two appendages vibration coordinates.
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b) Rayleigh—Rit; formulation

Due to the intricacy of the governing equations, their solution may be achieved by an approximate
solution procedure. To this end, w; can be represented by a series of trial shape functions, ¢!, satisfying
the boundary conditions, of which, each is multiplied by a time dependent generalized coordinate, g/,
that is,

Wj(Xit):Z(Dijqij =(@')"q' =12
o-[@) @) (1)
q=[a)" (@)'T
where @' and qj are the vectors of assumed mode shapes and generalized coordinates of the jth
appendage, respectively.

The terms in right hand side of Eq. (4) are kinetic energy of panels, hub and piezoelectric layers

denoted by T, T, and Tp,; , respectively.

ptabZ{ZZmaqa [oroid) +y? [ XPdx+y? zz<qaqa [oio;dx)
! app, app, appa
+2p (4} f(p, xdx) + R2Q? J'dx+chos WZZ(qaqa I(p,a(oadx)
i app, app, app, (12)
+Q%sin’y J.x dx

app,

+2RQ% cosy Y g} Icp{“‘dX— 2RQ? siny jxdx— 20% siny cosy Y _ (g} Iwiaxdx)}

! app, app, ! app,

where g is ith component of a th appendage and T, is:

and

TPZT=—pptprZ{ZZ(q.q, [olfofax)+y [xPdx+y? Zz(q.q, [olofd0

a=ln=1 i ] pzT2 pzT2 j PZT2
+2y Yy (gf Igo, XdX)+R2Q2 jdx+chos N CH N J.(piago?dx)
i PZT? PZT2 i PZT? (14)
+Q2%sin%y szdx+ 2RQ? cosy »_qf jwiadx
PZT2 opz1d
—ZRstinz,// jxdx—ZQZ Sinl//COSI/IZ(Qia _[qoiaxdx)}
PZT? ! PZT?

Using Eg. (10) and applying the Rayleigh-Ritz procedure on the governing equations, the following set of
ordinary differential equations is obtained:

|:MW/ MW:|{‘%}+|:CW/ CWHI/-)}'{O 0}{‘//}_’_ KHW _ T (15)
My, Mg |ld Co Co]la 0 Kyglla KHq _erlastelectava
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-1 T

v, =—-K = K q

Pelect pelastelects

where q =[(q"')" (q°®)"]" and 7 is the control torque. v, and v, are the vectors of the actuator and

sensor voltages, respectively. The elements of the mass matrix in Eq. (15) are:

M,,) = b, 3°{ [ x dx+22qaqa [oro;dd

a=1 app, app,

thZZ{j X dx+zzq q° j(pf‘ A+ 1,

a-ln=l pzra poTS
2 2 N,
(M./,q)ij :(Mql//)ji Zpbtaz J.(DiaXdX-i-ppbthZ J.(DiaXdX

a=1 app, a=1 n=1 PZTna
and
2 a_a 2% a_a
(Mqq)ij :pbtaz I@i @jdx+ppbt, zz J-(/’i @jdx
a=lapp, azlnzlappg

The matrix of Coriolis and centrifugal effects is defined as [26]:

N .
Cij = zcijkgk
k=1
S=lv q'T
where

Ciji == ( + B
2" 3¢, ¢, ol

)

and

M = (MW)M (qu)lxN }

(qu/)le (qu)NxN

is the mass matrix. The stiffness matrix is K, = diag(K,, , K, )and

a9, ’

= j El 52q,i2(x) az(q)igx))T dx +
. OX OX
S 0*®' (x) (@' (X))
2 I Sl ox’ ox?

n=l pzr2

t
where | ) =t bt (?a +1,) is the moment of inertia of each piezoelectric layer.
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By, AN K buens. 1N EQ- (15) are the matrices of the elastic-electric effect of the piezoelectric
actuator and sensor layers:
T
Kl 0 Kl 0
_| Pelastelect T _| Pelastelects (23)
Pelastelecty 0 K 2 ' Pelastelects 0 K 2
Pelastelect, Pelastelects
where 0 is the zero matrix and
K Lelaslelecta Or K pelaslelects [K pee; K :3992 o K ;JEENI J (24)
herein K 'pee is the vector of the jth column of the elastic-electric matrix and is defined as
ach'
pee, - J. (25)
PZT|
K - is the capacitance matrix of the piezoelectric patches
8 T
K Pelect = z _[gpn Pn Pn dv (26)
n=1 pzT,
where the N x1vector P, has zero entries, except for entry n which is equal to 1/tp .
The vectors KH and KH in Eq. (15) are the effects of moving spacecraft in the orbit:
(Ky, )i = pbt, Z{Q2 smz//cosz//ZZ(qaqa _[ pipidx) — Q7 siny cosy szdx
app, appPa
+RQ?siny Y. (qf I¢iadx)+ RQ? cosy jxdx+QZ cos(2y) Y (a7 Igoiaxdx)}
i app, app, i app,
2 a_adv) _ O2 ci 2 (27)
p, bt ZZ{Q SIny/costZ(q I pRpidx) — Q% siny cosy J'x dx
a=l n=1 PZT? PZT?
+RQ?siny Y (g2 J.gof‘dx)+ RQ? cosy _[xdx +0% cos(2p)> (a7 _[wf‘xdx)}
i PZT? PZT? i PZT
+1, Q*siny cosy — 1, Q° siny cosy
and
2 2
(Kp, )i = pbta Z{ Q% cos’ Y (@5 [offdx)-RQ? cosy [ gfdx
j appa appPa
+Q?siny cosy I¢, xdx}+ ppbt z Z{—Q2 cos z//Z(qJ j(p,a ) (28)
app, a=In=1 I pzT?

~RQ? cosy I(p{"dX +Q? siny cosy '[goiaxdx}
PzT2 PZT2

April 2014 1JST, Transactions of Mechanical Engineering, Volume 38, Number M1



126 E. Azadi et al.

3. HYBRID CONTROL SYSTEM DESIGN

The governing equations of motion of the system are decoupled into fast and slow subsystems by using
singular perturbation method. A hybrid control strategy that consists of an adaptive inverse dynamics
controller for maneuver attitude control (slow subsystem) and a Lyapunov-based controller for
suppression of vibration of appendages (fast subsystem) is proposed to control both fast and slow
subsystems.

a) Decomposition of the equations of motion by the singular perturbation theory

Singular perturbations cause a multi-time-scale behavior of dynamic systems characterized by the
presence of both slow and fast transients in the system response to external stimuli. After dividing system
into two fast and slow subsystems, a hybrid controller can be applied to them. For applying singular
perturbation technique a state should be multiplied by a small positive parameter called perturbation
parameter [27]. The magnitude of the elements of the stiffness matrix K, is very large in comparison to
the other coefficient in Eq. (15) [27], therefore, the singular perturbation parameter ¢ and a new variable z
may be defined as

[Ky Ja} =k, [K,Ha}=1{z}
(29)

[Ko Hal=¢{z}
where k. is the largest coefficient of the stiffness matrix, qu, & is the singular perturbation parameter
27],and & =1/k,, . It can be shown that O(K by, ) = O(€) ; therefore, K, matrix can be written
as
K potens, = ‘C"Kn . (30)
Substituting Egs. (29) and (30) in Eqg. (15), the following set of equations is obtained
v=H,(-C,w- gZCWq Kq;jz' - KHW + 1)
H,,(-C,, W —&°C K2 K K 3D
+ 124 (_ q(//\l’ —& qq qq Z - Z - Hq - pelastelecta va)
and
e qu H,, (-C,, v - gZCWq l?q;jz - KHW +1)
K Hy (-C, W —&°C K2 K K (52
T RagaMgg (- qvW =& LggRgZ—2— He — “" Pelastelects va)

where H = M ™. The model of the slow subsystem, by considering & =0 and solving for z in Eq. (32),
is obtained

2, =HgHg, (-C,, W, =Ky +7)-Cy i, —K,, (33)
herein, subscript s indicates that the system is considered in the slow time scale. Substituting Eq. (33) in
(31) yields

w,=(H,, - HWHq’quW)(—Cl/,u,\i;s Ky, +7,)
=M,, (-C,, ¥, K, +7.)

v

(34)
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By choosing & =t/&, introducing z, =z —z, and considering both the slow variables as constant in fast
time scale and the terms of O(&*)and higher equal to zero, the fast subsystems can be obtained as

d2
dg?

ay ~ya q

_ _ _ . d _
-1 -1

2, =—eK,(H,,C, Ky +H,CopKyg )Ezf —KgHgZs )

- gK qq H qq K pelaslelecta va

b) Adaptive inverse dynamics control for the slow subsystem

Controllers that can handle regulation and tracking problems without the need for knowledge of the
process parameters are by themselves an appealing procedure. Such controller schemes belong to the class
of adaptive control. Equation (15) is linear in dynamic parameters and can be written as [26]:

M, w+Cy+K, =Yp (36)

where Y is known as the regression matrix and p is the vector of parameters of the system. The control
input can be determined by:

T:My/y/(l/;d_KD&_KP&)-FCV/V/W-’_KHW (37)
We assume here that M vy CEW and KHW have the same functional form as M, C  and
K H, with estimated parameters p . With respect to (36) we can write the following equation:
T=Yp (38)

Substituting (36) into the dynamics of the system gives the following closed-loop error equation
M,, (7 + Kol + Kor) =Y p (39)
where (~) = () - () desired and
Yp:(My/l//_Ml//(y)lp-i_(cl//(y_cl//(y)w-i_(KHw_KHW) (40)
The error equation in (39) can be rewritten as

~

l;+KDl/7+KP&: My/wilYﬁP-:aﬁp- (41)

This equation can be cast in state space form by choosing&, =7 &, =y ,&= € &) e

{=AL+BDp (42)

o 1] o
oK, —Kp || “3)

with choosing the Lyapunov function candidate

with
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V=E"PE+p'Tp (44)

where P is the unique symmetric positive definite solution to the equation A"P + PA =—-Q, for a given
symmetric positive definite matrix Q. Taking the time derivative of V gives:

V=-8"Q&+2p" (®"B"P{+Tp) (45)
Choosing the update law as
p=-T'® B"P¢ (46)
Equation (45) is reduced to the following form:
V=-£'QC (47)

It can be shown that{e L, "L, , pel,, and then the control input T in (37) is bounded. It
follows that w e L, so that EeL_. Then ¢ is uniformly continuous and, since & e L,, it can be
concluded that ¢ asymptotically converges to zero.

¢) Controller design for the fast subsystem

The voltage applying to the piezoelectric actuators is proposed as:
=-Kyv, =K, (48)

where K, and K, are two positive definite matrices. In order to investigate the stability of the system
the Lyapunov approach is used and the following Lyapunov candidate is determined

1 my 1 1
VLyapunOVf - 2 q-l; H qqlq f + Eq-l; quq f + E qu? K pelaslelecta K :)—elaslelecta q f (49)

where K, is a positive definite matrix. Equation (35) can be rewritten as follows:

H;;qf+(H;qu Co+C)d; +Kyq; =—

qy ~yq

Va (50)

pelastelecta

Because the piezoelectric parameters are very small negative values [28], and with respect to Eq. (26), we
can write:

-1 T T 2

K K =—1K =0(1/¢

Pelect  Pelastelectg H Pelastelect, ( ) (51)
where u is a positive scalar. Since the slow variables are considered constant in fast time scale,
H.y = 0. By substituting H_ G, from Eq. (50) and knowing the fact that H ; = 0, the time derivative
of Eq. (49) can be written as:

T

Pelastelecty

: T -1 . T .
VLyapunovf =—q¢(H qq qu/C +qu Jas —KgquqiK Pelastelecty K qf (52)

Here, the second term is a negative term and K is defined such that K4 2 components are of order 1/¢.
Using Eq. (29) and noting the Eq. (51), the above equation can be written as

4 5T 7 -1 -1
VLyapunov =—&" 2K (HygHy,Cpo + )K 63
35Tz -1 T -1
—& Zf qu K pelastelec‘a K pelas'[electa qu Zf
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Since the first term is of the magnitude O(&*), while the second term is of O(g®), the first term can be
ignored and by utilizing the Lyapunov theory and the singular perturbation method, the derivative of
Lyapunov function is shown to be negative; therefore, the stability of the fast subsystem with the proposed
controller is guaranteed.

4. SIMULATION RESULTS AND DISCUSSION

In order to observe the response of the whole system and performance of the hybrid controller, the flexible
spacecraft in an orbit is simulated. First, the accuracy and convergence behavior of the solution method
are investigated by obtaining the system response for a different number of mode shapes. The solution
process is continued until the difference between the two successive solutions reduces to an acceptable
error threshold. Based on a number of simulation runs for various cases, we found that three bending
modes are sufficient to reach good accuracy.

The parameters of the piezoelectric layers and the flexible appendages are summarized in Table 1.
The desired trajectory of the satellite’s maneuver is designed to start and finish with constant acceleration
and deceleration, respectively, and in the middle a constant velocity is considered.

Table 1. The characteristics of the piezoelectric layers and the flexible appendages 9

Piezoelectric layer Flexible appendage

Modulus, E, = 2x10° N /m? Modulus, E =76 x10° N /m?

Piezoelectric constant, d, = 22x1072my Length, L=5m

Thickness, t, =1mm Th_ickness, t, =8mm
Width, b=0.5m

Width, b=0.5m

. _ 3
Density, , =1800kg /m? Density, p =2840kg /m

In simulating process, governing equations of motion of the system, Eqg. (15), are considered and the
decomposed equations of motion using singular perturbation theory are used only for hybrid control
design. The proposed hybrid controller is applied to the system and as demonstrated in Figs. 2 the adaptive
inverse dynamics control utilized for the slow subsystem, which is associated with rigid body motion of
the flexible spacecraft, shows a good performance in tracking the desired trajectory and the resulting
errors are small. In order to demonstrate the capability and usefulness of the piezoelectric actuators, two
cases are simulated. First, we consider the case when the controller is used and the voltages are applied to
the piezoelectric actuators. Second, to highlight the effects of the piezoelectric layers, the satellite is
equipped with a closed loop central system to track the desired trajectory; but this time, without applying
the voltages to the piezoelectric actuators. Figures 3-5 show the time histories of three generalized
coordinates of the appendage. Figure 6 represents the tip deflection of the appendage. It can be seen that
the piezoelectric actuators play an efficient role in suppressing the adverse vibration of the system. The
output voltages of the sensors of the appendage are also presented in Figs. 7-9, respectively. Figure 10
shows the voltages applied to piezoelectric actuators bonded to two appendages. These figures illustrate
the performance of the adaptive inverse dynamics controller that is applied to the flexible spacecraft
moving in an orbit.

We consider three patches of piezoelectric on each appendage as sensors and three piezoelectric
layers as actuators. Each appendage has a similar behavior in the maneuver. Therefore only one
appendage response is shown.
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actuator, (b) second actuator and (c) third actuator.

5. CONCLUSION

In this paper a hybrid control scheme was applied to control the maneuver of a flexible satellite in an orbit
and suppress the vibrations of the appendages. The piezoelectric layers were attached to the appendages
and worked as sensors and actuators. The Lagrange-Rayleigh-Ritz technique is used to derive nonlinear
governing equations of motion and no simplification was considered in their derivation. Because of the
flexibility and maneuvering in an orbit, the governing equations were coupled and quite complicated. In
order to apply the controller, the governing equations of the system were decomposed into slow and fast
subsystems using the singular perturbation theory. Then, an adaptive inverse dynamics control for slow
and a Lyapunov based controller for the fast subsystem were proposed and developed. The fast and slow
subsystems were used only for applying the controller, and in order to simulate the responses of the
system the general coupled equations of motion were used. Finally, the system was simulated and the
outcomes confirmed the advantages of the hybrid control scheme.
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