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Abstract– In this paper, vibration suppression and control of a smart flexible satellite 
maneuvering in a circular orbit are studied. The satellite is considered as a rigid hub and two 
flexible appendages with PZT (lead zirconate titanate) layers attached on them as sensors and 
actuators. Flexible satellite governing equations of motion are obtained using Lagrange-Rayleigh-
Ritz technique and assumed mode method; these dynamic equations of motion of the flexible 
satellite are nonlinear and coupled. A thorough look at the resulting equations reveals that the 
flexible satellite dynamics that include the appendage vibrations and its rigid maneuver occur in 
two different time scales. Therefore, the dynamics of the flexible satellite can be divided into two 
fast and slow subsystems using the singular perturbation theory. The slow and fast subsystems are 
associated with rigid maneuver and appendages vibrations, respectively. A hybrid controller is 
proposed which consists of an adaptive inverse dynamics for slow subsystem maneuvering control, 
and a Lyapunov based controller for vibration suppression of the fast subsystem. Use of adaptive 
controller allows us to cope with parameters uncertainty for the rigid motion of the system. Using 
the Lyapunov approach the stability of these hybrid controllers is studied. Finally, the whole 
system is simulated and the simulation results show the effective performance of the proposed 
hybrid controller.          

 
Keywords– Smart flexible satellite, orbital maneuver, adaptive inverse dynamics control, singular perturbation 
theory, active vibration  
 

1. INTRODUCTION 
 

For several reasons a satellite must be able to re-orient and perform tracking maneuvers. These maneuvers 
will cause certain levels of vibrations to flexible appendages. Many researchers have studied dynamics 
and control of spacecrafts having space maneuvers [ 1- 5]. 

Some researchers investigated the control of satellite maneuver and appendage vibration. Hu [ 6] 
designed an adaptive back stepping controller for flexible spacecraft attitude maneuver and elastic 
vibration control. This controller takes into consideration the bounds on angular velocity. A fault-tolerant 
adaptive back stepping sliding mode control scheme was developed for flexible spacecraft attitude 
maneuvering using redundant reaction wheels in the presence of parametric uncertainty disturbances and 
unknown faults by Jiang et al [ 7]. Erdong and Zhaowei [ 8] studied an attitude regulation control using 
passivity-based technique for maneuvering flexible spacecraft. In the above studies no smart materials 
were used to suppress the vibration of the spacecraft appendages.  

Many studies have been conducted when smart materials and piezoelectric layers are used as sensors 
and actuators for active vibration suppression of spacecraft flexible appendages. Li and Bainum [ 9] 
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applied the so-called momentum exchange feedback control and distributed piezoelectric actuator 
technology for the vibration control of a flexible spacecraft; they considered satellite as a rigid hub with 
cantilever flexible beam appendage which could undergo a single axis rotation. Hu and Ma designed a 
generalized control scheme based on the variable structure output feedback and active vibration control 
techniques using piezoceramics attached on the panel for the large angle attitude maneuver control of 
flexible spacecraft [ 10]. Also, they studied the vibration control of flexible spacecraft during attitude 
maneuver. The variable structure output feedback control was used to determine the flywheel torque for 
maneuver control and piezoelectric materials for active vibration suppression [ 11]. Hu [ 12] proposed a 
generalized scheme based on the sliding mode and active vibration control techniques for a flexible 
spacecraft equipped with piezoelectric layers. He used a simplified model for the large angle attitude 
maneuver. Qiu et al [ 13] presented the theoretical analysis and experimental results of active vibration 
suppression of a smart flexible cantilever plate. To decouple the bending and torsional vibration for 
measuring and driving, gyroscope and PZT patches were used as sensors and actuators by utilizing 
optimal placement. Azadi et al [14] applied an adaptive-robust control scheme to control the maneuver of 
a flexible satellite while suppressing the vibrations of the appendages. They used the piezoelectric layers 
as actuators. Also, Azadi [ 15] used a robust passivity based control to control the maneuver of the satellite 
and suppress the appendages vibration. 

In some researches the spacecrafts are considered in a circular orbit, in order to control their orbital 
maneuver and vibration suppression, the effects of their motion in the orbit have to be considered. Singh 
and Zhang [ 16] designed an adaptive control system for a single axis rotational maneuver and vibration 
suppression of an orbiting spacecraft with flexible appendages. For synthesis of the control law, only the 
pitch angle was used for feedback. Hui et al [17] considered the control of entire-formation maneuvering 
in low-thrust Earth-orbiting spacecraft formation flying (SFF). In their study each spacecraft was modeled 
as a point mass. Maganti and Singh [18] designed a simple adaptive control system for the rotational 
maneuver around one axis of an orbiting spacecraft with flexible appendage. They considered a linear 
approximated model by ignoring the orbiting effects and other nonlinearities. Dong et al [ 19] applied an 
adaptive fuzzy sliding mode controller for the networked control systems with nonlinear and uncertain 
parameters during the flexible spacecraft slew maneuver. The spacecraft moved in a circular orbit. They 
reduced and decomposed the dynamics equations of the spacecraft into three single-input subsystems. Hu 
et al. [ 20] investigated a robust nonlinear control design under the constraints of assigned velocity and 
actuator torque for attitude stabilization of a rigid spacecraft. In these studies, vibration suppression is not 
directly considered; so, there is no use of smart materials for stabilization of vibration of the appendages.  

In this paper the nonlinear governing equations of motion of a flexible satellite with piezoelectric 
layers are derived and no simplification or reduction is applied to these equations. The satellite is 
considered as a rigid hub with two flexible appendages with attached piezoelectric layers. The spacecraft 
rotates in circular orbit with constant speed and has pitch angle rotation maneuver. The piezoelectric 
layers are used as actuator and sensor to suppress vibration of panels. Also, the hybrid adaptive inverse 
dynamics/Lyapunov control is designed to control spacecraft maneuver and vibration suppression of 
panels together. This adaptive control scheme is robust against parameter uncertainties. Finally, the 
simulation results show the effectiveness and performance of controller. 

 
2. SYSTEM DYNAMICS 

 
a) Governing equations 
 
In this study we consider a spacecraft with a rigid hub and two flexible appendages. The piezoelectric 
layers are attached to the appendages (see Fig. 1). Each appendage is proposed as a cantilever beam with 
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length L , width b , thickness at , density  , Young's modulus E  and momentum of inertia I. The 
thickness of each piezoelectric layers is pt , the density is p , Young's modulus is pE , width b  and the 
equivalent piezoelectric coefficient is shown by 31e . The lateral deflection of each point of the ith 
appendage is denoted by )(xwi . Each pair of piezoelectric layers is attached on opposite sides of the 
appendage from nx1  to nx2  ( Nn ...,,2,1 ), where N  is the number of piezoelectric layers. XYZ  is an 
earth-center inertial reference frame such that XZ is the orbit plane. The origins of the coordinate frames 

iii zyx  ( 2,1i ) are attached to the hub center. We consider the spacecraft moving in a circular orbit with 
constant angular speed  ; it also has a rotational maneuver around its 1z axis with angular speed of  , 
see Fig. 1.  

 
Fig. 1. Schematic view of the spacecraft in orbit and its coordinates 

 
The velocity of an appendage element Bv  can be determined by using the following equation: 

                                    ABABAB rvvv //    (1)

Av  is the hub velocity and ABv /  is relative velocity of point B  with respect to the rigid hub.   is the 
vector of hub's angular velocity, ABr /  is the position vector. Av , ABv / ,   and ABr /  are obtained by the 
following equations: 

                             22/12/
ˆˆ,ˆˆ,ˆ,ˆ jwixrIkjwvKRv ABABA        (2)

where (
.

) means )(
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d
. Now one can obtain velocity of point B  as: 
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where hM is hub's mass, 
xhI , 

yhI , and 
zhI are hub moments of inertia around x2, y2, and z2 axes, 

respectively. aN  is the number of piezoelectric layers on ath appendage.  
We consider each appendage as a Euler- Bernoulli beam, so the displacement field of the beam can be 
written as [21]: 

                                         2,1
),(

),( 



 a

x

txw
ytxu a

xa  (5)

where ),( txwa  and ),( txu xa  are the displacements in y direction and  longitudinal x  direction of the 
i th appendage in 222 zyx  coordinate frame, respectively. The strain x and stress x in the appendages 
are as follows [21]: 

                          
2

2 ),(

x

txw
y a

x 


 ,     
2

2 ),(

x

txw
Ey a

x 


 ,        2,1a  (6)

The stress in piezoelectric layers can be expressed as [ 22], [ 23]: 
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where the subscript np  represents the n th piezoelectric layer and )...1( NnhvE
nn pnz   is the 

electric field in the n th piezoelectric layer. The first and second terms on the right hand side of Eq. (7) are 
the stresses due to the mechanical and electrical effects of the piezoelectric layers, respectively. 
On the other hand, the potential energy of the panel and piezoelectric layers are: 
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where y is the axis perpendicular to the piezoelectric surface, and nd  is the electric displacement for the 
nth patch. The electric displacement is: 

                                 
p
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  (9)

wherein 
np is the dielectric constant of the piezoelectric material which forms the nth patch. The last term 

in Eq. (8) is the electric energy stored in the piezoelectric material. 
The equation of motion and boundary conditions will be derived using Lagrange’s method which 

may be expressed as: [24], [25] 
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where PZTapp UUU   and hPZTapp TTTT   are strain energy and kinetic energy, respectively, and 
Q  is the generalized force.   refers to the vector of generalized coordinates consisting of satellite 
rotation angles and two appendages vibration coordinates. 
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b) Rayleigh–Ritz formulation 
 

Due to the intricacy of the governing equations, their solution may be achieved by an approximate 
solution procedure. To this end, jw  can be represented by a series of trial shape functions, j

i , satisfying 
the boundary conditions, of which, each is multiplied by a time dependent generalized coordinate, j

iq , 
that is, 
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where jΦ  and jq  are the vectors of assumed mode shapes and generalized coordinates of the j th 
appendage, respectively. 

The terms in right hand side of Eq. (4) are kinetic energy of panels, hub and piezoelectric layers 
denoted by appT , HT  and PZTT , respectively.   

  



  

    










i app

a
i

a
i

appi app

a
i

a
i

app

i j app

a
j

a
i

a
j

a
i

appi app

a
i

a
i

app i j app

a
j

a
i

a
j

a
i

a i j

a
j

app

a
i

a
j

a
iaapp

aaa

a

aaa

a aa

xdxqxdxRdxqR

dxx

dxqqdxRxdxq

dxqqdxxdxqqbtT

)}(cossin2sin2cos2

sin

)(cos)(2

)()({
2

1

222

222

2222

222
2

1













 
(12)

where a
iq is i th component of a  th appendage and HT is: 
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Using Eq. (10) and applying the Rayleigh-Ritz procedure on the governing equations, the following set of 
ordinary differential equations is obtained:   
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where TTT ])()([ 21 qqq   and τ  is the control torque. av  and sv  are the vectors of the actuator and 
sensor voltages, respectively. The elements of the mass matrix in Eq. (15) are: 
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The matrix of Coriolis and centrifugal effects is defined as [ 26]: 
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is the mass matrix. The stiffness matrix is ),(
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bttI   is the moment of inertia of each piezoelectric layer.  
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aelastelectpK and 
selastelectpK  in Eq. (15) are the matrices of the elastic-electric effect of the piezoelectric 

actuator and sensor layers: 
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electpK is the capacitance matrix of the piezoelectric patches  
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3. HYBRID CONTROL SYSTEM DESIGN 
 
The governing equations of motion of the system are decoupled into fast and slow subsystems by using 
singular perturbation method.  A hybrid control strategy that consists of an adaptive inverse dynamics 
controller for maneuver attitude control (slow subsystem) and a Lyapunov-based controller for 
suppression of vibration of appendages (fast subsystem) is proposed to control both fast and slow 
subsystems.  
 
a) Decomposition of the equations of motion by the singular perturbation theory 
 

Singular perturbations cause a multi-time-scale behavior of dynamic systems characterized by the 
presence of both slow and fast transients in the system response to external stimuli. After dividing system 
into two fast and slow subsystems, a hybrid controller can be applied to them. For applying singular 
perturbation technique a state should be multiplied by a small positive parameter called perturbation 
parameter [ 27]. The magnitude of the elements of the stiffness matrix qqK  is very large in comparison to 
the other coefficient in Eq. (15) [ 27], therefore, the singular perturbation parameter   and a new variable z 
may be defined as  

                                                      
     
   zK

zKkK

qq

qqmqq

2][

][][
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

q

qq
 (29)

where mk  is the largest coefficient of the stiffness matrix, qqK ,   is the singular perturbation parameter 
 27], and mk12  . It can be shown that )()( OKO

aelastelectp  ; therefore, 
aelastelectpK matrix can be written 

as  

                                                    
aelastelectaelastelect pp KK   (30)

Substituting Eqs. (29) and (30) in Eq. (15), the following set of equations is obtained 
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where 1 MH . The model of the slow subsystem, by considering 0  and solving for z in Eq. (32), 
is obtained 

qHsqsHsqqqs KCKCHHz   ψτψ   
)(1  (33)

herein, subscript s indicates that the system is considered in the slow time scale. Substituting Eq. (33) in 
(31) yields 
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By choosing  t , introducing sf zzz   and considering both the slow variables as constant in fast 
time scale and the terms of )( 2O and higher equal to zero, the fast subsystems can be obtained as 

apqqqq
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2
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 (35)

b) Adaptive inverse dynamics control for the slow subsystem 
 

Controllers that can handle regulation and tracking problems without the need for knowledge of the 
process parameters are by themselves an appealing procedure. Such controller schemes belong to the class 
of adaptive control. Equation (15) is linear in dynamic parameters and can be written as [26]: 

                         ρYKCM H 


   (36)

where Y  is known as the regression matrix and ρ  is the vector of parameters of the system. The control 
input can be determined by: 

                                    HPDd KCKKM ˆˆ)~~(ˆ  τ  (37)

We assume here that M̂ , Ĉ and 
HK̂ have the same functional form as M , C and 

HK with estimated parameters ρ̂ . With respect to (36) we can write the following equation: 

                                 ρτ ˆY  (38)

Substituting (36) into the dynamics of the system gives the following closed-loop error equation  

                                    ρ~)~~~(ˆ YKKM PD  
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The error equation in (39) can be rewritten as 
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This equation can be cast in state space form by choosing ~1 ξ , ~2 ξ ,
TTT )( 21 ξξξ , i.e. 
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with choosing the Lyapunov function candidate 
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                               ρρξξ ~~  TT PV  (44)

where P is the unique symmetric positive definite solution to the equation QPAPAT  , for a given 
symmetric positive definite matrix Q. Taking the time derivative of V gives: 

                                    )ˆ(~2 ρζρξξ  PBQV TTTT  (45)

Choosing the update law as 

                                        ζρ PBTT 1̂  (46)

Equation (45) is reduced to the following form: 

                                            ζζ QV T  (47)

It can be shown that  LL2ζ ,  Lρ̂ , and then the control input τ  in (37) is bounded. It 
follows that  L  so that  Lξ . Then ζ  is uniformly continuous and, since 2Lξ , it can be 
concluded that ζ asymptotically converges to zero. 
 
c) Controller design for the fast subsystem 
 

The voltage applying to the piezoelectric actuators is proposed as: 

                                       sPsda KK vvv    (48)

where dK  and PK  are two positive definite matrices. In order to investigate the stability of the system 

the Lyapunov approach is used and the following Lyapunov candidate is determined 
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 where qK  is a positive definite matrix. Equation (35) can be rewritten as follows: 
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Because the piezoelectric parameters are very small negative values [28], and with respect to Eq. (26), we 
can write:  
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where   is a positive scalar. Since the slow variables are considered constant in fast time scale, 
01 

qqH . By substituting fqqH q1  from Eq. (50) and knowing the fact that 01 
qqH , the time derivative 

of Eq. (49) can be written as:  

       f
T
pp

T
fdfqqqqqq

T
fLyapunov

aelastelectaelastelectf
KKKCCHHV qqqq     )( 1  (52) 

Here, the second term is a negative term and dK  is defined such that dK  components are of order 1 . 
Using Eq. (29) and noting the Eq. (51), the above equation can be written as 
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Since the first term is of the magnitude )( 4O , while the second term is of )( 3O , the first term can be 
ignored and by utilizing the Lyapunov theory and the singular perturbation method, the derivative of 
Lyapunov function is shown to be negative; therefore, the stability of the fast subsystem with the proposed 
controller is guaranteed. 

 
4. SIMULATION RESULTS AND DISCUSSION 

 
In order to observe the response of the whole system and performance of the hybrid controller, the flexible 
spacecraft in an orbit is simulated. First, the accuracy and convergence behavior of the solution method 
are investigated by obtaining the system response for a different number of mode shapes. The solution 
process is continued until the difference between the two successive solutions reduces to an acceptable 
error threshold. Based on a number of simulation runs for various cases, we found that three bending 
modes are sufficient to reach good accuracy.  

The parameters of the piezoelectric layers and the flexible appendages are summarized in Table 1. 
The desired trajectory of the satellite's maneuver is designed to start and finish with constant acceleration 
and deceleration, respectively, and in the middle a constant velocity is considered.  

 
Table 1. The characteristics of the piezoelectric layers and the flexible appendages  9 

Piezoelectric layer 

Modulus, 29 /102 mNEp   

Piezoelectric constant, 1121022  mVd p
 

Thickness, mmt p 1  

Width, mb 5.0  

Density, 3/1800 mkgp   

Flexible appendage 

Modulus, 29 /1076 mNE   

Length, mL 5  

Thickness, mmta 8  

Width, mb 5.0  

Density, 3/2840 mkg  

In simulating process, governing equations of motion of the system, Eq. (15), are considered and the 

decomposed equations of motion using singular perturbation theory are used only for hybrid control 

design. The proposed hybrid controller is applied to the system and as demonstrated in Figs. 2 the adaptive 

inverse dynamics control utilized for the slow subsystem, which is associated with rigid body motion of 

the flexible spacecraft, shows a good performance in tracking the desired trajectory and the resulting 

errors are small. In order to demonstrate the capability and usefulness of the piezoelectric actuators, two 

cases are simulated. First, we consider the case when the controller is used and the voltages are applied to 

the piezoelectric actuators. Second, to highlight the effects of the piezoelectric layers, the satellite is 

equipped with a closed loop central system to track the desired trajectory; but this time, without applying 

the voltages to the piezoelectric actuators. Figures 3-5 show the time histories of three generalized 

coordinates of the appendage. Figure 6 represents the tip deflection of the appendage. It can be seen that 

the piezoelectric actuators play an efficient role in suppressing the adverse vibration of the system. The 

output voltages of the sensors of the appendage are also presented in Figs. 7-9, respectively. Figure 10 

shows the voltages applied to piezoelectric actuators bonded to two appendages. These figures illustrate 

the performance of the adaptive inverse dynamics controller that is applied to the flexible spacecraft 

moving in an orbit. 

We consider three patches of piezoelectric on each appendage as sensors and three piezoelectric 

layers as actuators. Each appendage has a similar behavior in the maneuver. Therefore only one 

appendage response is shown.   
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Fig. 2. Trajectory tracking of the angle of rotation of the satellite 
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Fig. 3. Time history of the first generalized coordinate of the appendage: (a) whole domain  
and (b) magnified from t=0s to 0.5s 
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Fig. 4. Time history of the second generalized coordinate of the appendage: (a) whole domain  
and (b) magnified from t=0s to 0.5s 
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Fig. 5. Time history of the third generalized coordinate of the appendage: (a) whole  
domain and (b) magnified from t=0 s to 0.5s 
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Fig. 6. Tip deflection of the appendage: (a) whole domain and (b) magnified from t=0 s to 0.5 s 
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Fig. 7. Output voltage of first PZT sensor bonded to the appendage: (a) whole domain 
 and (b) magnified from t=0 s to 0.5 s 
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Fig. 8. Output voltage of second PZT sensor bonded to the appendage: (a) whole domain 
 and (b) magnified from t=0 s to 0.5 s 
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Fig. 9. Output voltage of third PZT sensor bonded to the appendage: (a) whole domain  
and (b) magnified from t=0 s to 0.5 s 
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Fig. 10. Applied voltage to PZT actuators bonded to the appendage: (a) first  
actuator, (b) second actuator and (c) third actuator. 

 
5. CONCLUSION 

 
In this paper a hybrid control scheme was applied to control the maneuver of a flexible satellite in an orbit 
and suppress the vibrations of the appendages. The piezoelectric layers were attached to the appendages 
and worked as sensors and actuators. The Lagrange-Rayleigh-Ritz technique is used to derive nonlinear 
governing equations of motion and no simplification was considered in their derivation. Because of the 
flexibility and maneuvering in an orbit, the governing equations were coupled and quite complicated. In 
order to apply the controller, the governing equations of the system were decomposed into slow and fast 
subsystems using the singular perturbation theory. Then, an adaptive inverse dynamics control for slow 
and a Lyapunov based controller for the fast subsystem were proposed and developed. The fast and slow 
subsystems were used only for applying the controller, and in order to simulate the responses of the 
system the general coupled equations of motion were used. Finally, the system was simulated and the 
outcomes confirmed the advantages of the hybrid control scheme.  
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