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Abstract- In this paper, thermal effects in nonlinear buckling analysis of micro beams is
investigated. Modified strain gradient theory with nonlinear von-Karman strain-displacement
relations and small scale parameters are used to derive the buckling behavior of micro beams. The
Poisson’s effect is included and its significance is demonstrated. Buckling behavior for two
different cases: 1) immovable axial boundary condition 2) movable axial boundary condition, are
studied and for each one the results for hinged-hinged and clamped-clamped beams are presented.
The analysis shows that modified strain gradient theory leads to a higher critical buckling load in
comparison with the classical and couple- stress theories. The results are verified using previous
related works.

Keywords— Thermal environment, nonlinear buckling analysis, modified strain gradient theory, microbeam,
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1. INTRODUCTION

Non-classical theories play an important role in the analysis of one-dimensional micro/nano structures.
Mohammadi-Alasti et al. [1] studied the mechanical behavior of a functionally graded cantilever micro-
beam subjected to nonlinear electrostatic pressure and temperature changes. In addition to the Volume
Fractional Rule of material, exponential function has been used for representation of continuous gradation
of the material properties through micro-beam thickness. Yao and Han [2] studied the thermal effect on
axially compressed buckling of a double-walled carbon nanotube. The effects of temperature change,
surrounding elastic medium and van der Waals forces between the inner and outer nanotubes were taken
into account. Wang et al [3] presented the thermal buckling properties of carbon nanotube with small scale
effects. Based on the nonlocal continuum theory and the Timoshenko beam model, the governing equation
was derived. Axial buckling characteristics of single-walled carbon nanotubes (SWCNTs) including
thermal environment effect were studied by Ansari et al. [4]. It was observed that the difference between
the thermal axial buckling responses of SWCNTs relevant to various boundary conditions is more
prominent for higher values of nonlocal elasticity constant. Based on theory of thermal elasticity
mechanics, Zhang et al. [5] developed elastic multiple column model for column buckling of MWNTs
with large aspect ratios under axial compression coupling with temperature change. They concluded that
the effect of temperature change on the buckling strain is dependent on the temperature changes, aspect
ratios, and the buckling modes of carbon nanotubes. Zhang and Shen [6] investigated the buckling and

postbuckling analysis of single-walled carbon nanotubes with (n, n)- and (n, 0)-helicity, when acted upon
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by the destabilizing loads of axial compression, torsion and external pressure, by using molecular
dynamics simulation. Zhang and Shen [7] also studied the thermal buckling of initially compressed single-
walled carbon nanotubes subjected to a uniform temperature rise by using molecular dynamics
simulations. A nonlocal elastic shell model was developed to investigate the axially compressed buckling
response of multi-walled carbon nanotubes considering thermal environment effect by Ansari et al. [8].
They showed that the effect of small-scale is more prominent for MWCNTs having smaller diameters and
a fewer number of walls. Simsek and Yurtcu [9] presented the static bending and buckling of a
functionally graded nanobeam based on the nonlocal Timoshenko and Euler—Bernoulli beam theory. The
material properties of the FG nanobeam were assumed to vary in the thickness direction. Lam et al. [10]
presented new formulation of strain gradient elasticity with small scale parameters. Akgoz and Civalek
[11] studied analytical solution of stability problem for axially loaded nano-sized beams based on strain
gradient elasticity and modified couple stress theories. Given the importance of thermal stresses in
microelectronic packaging, He et al. [12] investigated thermal characterization of epoxies. Yang and
Lim[13] analyzed thermal effects on buckling of nano columns with movable axial boundary conditions
and with von-Kérman nonlinearity based on nonlocal stress theory. Kong et al. [14] solved analytically the
static and dynamic problems of Bernoulli-Euler beams based on strain gradient elasticity theory. Ma et al.
[15] developed a microstructure-dependent Timoshenko beam model using a variational formulation.
Their analysis was based on a modified couple stress theory and Hamilton's principle. The new model
contained a material length scale parameter and could capture the size effect, unlike the classical
Timoshenko beam theory. Analytical solutions of a general third-order plate theory that accounts for the
power-law distribution of two materials through thickness and microstructure-dependent size effects were
presented by Kim and Reddy [16]. The modulus of elasticity and the mass density were assumed to vary
only through thickness of plate, and a single material length scale parameter of a modified couple stress
theory captured the microstructure-dependent size effects. Roque et al [17] used a modified couple stress
theory and a meshless method to study the bending of simply supported laminated composite beams
subjected to transverse loads. The Timoshenko beam kinematics were employed to model the beam, by a
modified couple stress theory. Civalek and Demir [18] developed an elastic beam model using nonlocal
elasticity theory for the bending analysis of microtubules based on the Euler—Bernoulli beam theory. The
size effect was taken into consideration using the Eringen’s non-local elasticity theory using the method of
differential quadrature method (DQM). Akgo6z and Civalek [19] studied the bending analysis of micro-
sized beams based on the Bernoulli-Euler theory within the modified strain gradient elasticity.

In this paper, a new nonlinear formulation considering Poisson’s parameter and temperature effect is
presented for micro beams. The formulation is based on modified strain gradient theory and subsequently,
buckling behavior is investigated for two different boundary conditions. Results are verified using some

previous related works.

2. PRELIMINARIES

In the classical linear theory of elasticity, the constitutive relations between the stress and strain is given
by

el

— l
O-ij —Aeﬁk(Sij +2,U.€U-, (1)

where A, u are Lame’s coefficients and o, e®® are stress and strain tensors, respectively. Solving for e we
get
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el =i( o &)
€ij 2u 9ij /16‘1 3A+2u/)’ (2

Considering the effects of thermal expansion, the strain is written as
& = efl + 6;;aAT (x), 3)

where « is the thermal expansion coefficient of the material and AT (x) is the temperature difference with
respect to the free stress state. Combining Egs. (2), (3) leads to

0ij = Megy — 3alT);; + 2u(e;j — 6;;aAT) 4)
Comparing Eq.(4) with Eq.(1) suggests that the total strain e;; as defined by
eij = &ij — 6;;alT, Q)
can be used to find the stress, and consequently,
o;j = Aejb;j + 2uey;. 6)

Lam et al. [10] presented the modified strain gradient theory that uses the stored strain energy u,, in a
continuum made of a linear elastic material occupying region ¢ with infinitesimal deformations and

written as
1 (EOINEY)
Uy = Efcb (Uijfij TPV Tpelije T misj){fj) dv, ™
where
Yi = Emm,ir ®)
1) 1 1
r)l(j]z = 3 (ejk,i + Cri,j + eij.k) - E(Sij(emm,k + Zemk,m)
©)
1
T 15 [6jk(emm.i + 2emi,m) + 6ki(emm,f + Zemjvm)]’
1
x5y =580+ 6;), (10)
0; = %(Cw‘l(u))i- a1

u;, y; and 0; represent the components of the displacement vector u, the dilation gradient vector y, and
infinitesimal rotation vector 6.

For a linear isotropic elastic material, the components of the stresses are related to the kinematic
parameters by (Lam et al. [10])

pi = 2ulgy; (12)
1 1
‘L'i(jlz = Zulfnlgﬂz (13)
m; = 2ul3x;; (14)

lo, 13,1, are material length scale parameters related to dilation gradients, deviatoric stretch gradients and
rotation gradients, respectively.

3. GOVERNING EQUATION

In the following formulation, the X-coordinate is taken along the length of the beam, the z-coordinate along
the thickness of the beam, and the y-coordinate is taken along the width of the beam. A uniform
homogeneous straight beam with length L is considered. The centroid of each section lies on the plane z =
0. The non-zero displacement field of an Euler-Bernoulli beam is expressed as
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dw(x)
dx '

uf =ulx) -z WE =w(x), (15)

where uf, WE are the axial and transverse displacements vector and u,w represents these values in the
centroid. In order to maintain consistency with uniaxial assumption we let
€2 = €33 = —Veéqy, (16)

where v is the Poisson’s ratio. Unlike many works, e.g.; [11, 14], here the Poisson’s effect is not ignored
and is included as an ad-hoc assumption in Eq. (16) and in the sequel. The nonlinear von-Karman strain is

written as
du d?w | 1 (dw)?
_du 1(aw 17
é11 dx z dx? + 2 (dx) ! a7
Substituting in Eq. (5), we get
du d?w 1 [fdw)?2
_qu_ 1(aw\™ _ 1
€11 dx z dx? + 2 (dx) alT, (18)

Using Eqgs. (12-14) the non-zero components of kinematic parameters and higher order stresses are

d? as dw d? d?
== -2 t g gr 9T vs=—(1-20 53
(19)
1d%w
Xi2 = X21 = T2 dxZ (20)
@ _ 2 (14 ) d’u  d3w N dw d?w d(AT)
M TV TN G T s T dxr Y ax )
4 d*w
o _ @ _ @O _
MNi13 = M311 = Mi31 = _E(l +v) dx2’
(21)
-1 d*u  d3w dwd?*w  d(AT)
(€Y) (€Y) (€Y) (€Y) (€Y) (€Y)
Mi22 = Mhzz = M212 = Mzz21 = 313 = M331 = ?(1 +v) <W_ ot o ae " Y dx >'
1 d*w 1 d*w
o _ . @ _ (1 _ L _
M223 = M232 = M322 = EO +v) dx2’ 833 = g(l +v) dx2
du d?w 1 /dw\?
0-11=E811=E(a_ZW+E(E) _(XAT), (22)
5 d?u d3w dwd?*w 5 d*w
pr=2ul5(A = 20)(z — 2zt oz —eAT), ps=—2uli(1-2v) (23)
d?w
mi, =m3; = —pl3 Ax? (24)
4 d*u  d3w dwd*w d(AT)
o _
i = Hig( “’)(@‘des e " dx )
8 d?
1 1 1
T§1)3 = T§1)1 = T§3)1 = —ul} E(l +v) T2 (25)

2

-2 d“u
o _ O _ _@®O _ @O _ 1O __1 _ 2
Ti22 = T133 = T12 = Tpp1 = T313 = T331 = ?Hll 1+v) (dxz TS + dx dxz Y dx

d*w  dwd?*w d(AT))
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D@ _ @ 2 L _2 52 a’w
Ti22 = T122 T Ty22 = _#l 1+ V) 2’ 333 = gﬂll(l + U)F
Due to the residual stress, the initial axial compressive force 2V, is induced in the beam. The cross
section area is denoted by A, area moment inertia by I and length by L. Based on Eq.(7) and considering
the effect of IV, the total strain energy becomes

1L du d?w 1 [dw\2 2
=10, B (22 0r+3(5) - anr)

x2 dx

+M(ygg,-m02+l2+595(1+v))(iff

3 2 2
(210(1 —2v)* +< 11(1 +v) )(d_“_zd_w+d_wci w_ad(m)

dx3 dx dx? dx
i (26)
Ny du d’w | 1 (dw
— G+ () —asT)dadx
— LA (S L(0) — aar) - v (2 2(2) — anr) + i (£2)
T2 0( dx 2 \dx a A\dx 2 \ax a 1\ ax2
2 dw d?w d(AT) 2
+k2(dx3) ( tax dx dx? —a dx ) )dx,
where
ky, = EI + uA (212(1 —2w)? + B+ 2B+ v)z),
ky = wl (213(1 = 20)? + 2E(1 + v)?), @7
— (INos
r= (A) .
The work done by axial compressive load p,, at the end is
Wexe = _pxxaulgc(:é' (28)
The principle of the virtual displacement is applied
Wey — U = 0. (29)
Substituting Egs. (26), (28) in Eq. (29) leads to
d*w dw\?
ln e dx* kz dx6 {(E ( 2 (E) - aAT)
i (30)
_ky d® (du | 1(dw dw,
T rZax? (dx + 2 (E) - (XAT) —Na) E} =0,
d du | 1 (dw)? 2 d? (du 1 (dw
£ (~EA (E +1(2) - aAT) +i2L (E +2 (d—) - aAT) +N,) =0, 31)
dw dSw  dw du | 1 [/dw)\2
{_klﬁ'l_ kzﬁ-l_E(EA(E-i_E(E) - (IAT)
(32)
kg d? (du 1 (dw)?
o (aﬁ(a) ‘“AT) Na)}owlizs = 0,
d2w d*w | kzdw d (du dw =L
U dx? —k; dx* T 2 dx dx (dx t2 (E) - aAT)}SE x=0 0, (3)
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{ 2 dx3} dxz =0 = 0: (34)
du | 1(dw d? (du | 1 (dw\?
(EA (E +2 (E) - aAT) - r—zm(dx +1(2) - aAT) N, + Doy }ulzk = 0, (35)
ky d (du | 1(dw x=L
r2 dx (dx + 2 (E) B aAT)}é‘E x=0 0. (36)

Equations (30) and (31) describe the governing equations of the nonlinear Euler-Bernoulli beam, while
Egs. (32-36) represent the boundary conditions. Equations (32), (33), (35) denote the classical boundary
conditions and Eqgs.(34) and (36) show the non-classical boundary conditions resulting from higher
stresses. If Poisson’s effect, temperature differences and nonlinear terms are neglected, the Eqgs.(30-36)
reduce to those presented by Akgoz and Civalek[11]. Equations (27, 28, 30-36) indicate that if [, =1, =0
(like modified couple stress theory [20-28], classic theory) the Poisson’s effect can be neglected, but if
lo # 0,1, # 0 (like modified strain gradient theory) the Poisson’s effect must be considered. Introducing
the following variables, non-dimensional form of Egs. (27-33) are derived

W oy X Ty Nal? ko ke Pal?
W_L'U_L'X_L'bO_L'Na_ El 'Kl_EI'KZ_EILZ’Pxx_ EI ’
AT(X,t) = (21301 - 20)% + 13 + 2 13 (1 + v)?), 37)

K =221 - 202 + 23 +0)?). lg =2, =2 1, =2,

d*w dsw v | 1 (dw\?
K e —Ke e — a{(— (a + 5(5) - “AT)

] , (38)

K, d? (dU 1 [/dw aw,

—b—m(dx +3(@) - “AT) N33 =0,
1 fau 1 (aw\?2 d? (du | 1 /dw)>2
d—x{——(d—x+z(d—x) - “AT) +ia (3 (5) —ear)+ =0 %)
LW 1 (du 1 (dw 2
{- Kl X3 +K2 dX5 dx (b2<dX+E(E) —(XAT)

(40)

K, d2 (dUu | 1 [/dw\2 =

s (G +3 () - aar) - NS =

w A*W K, dw d [du 1 [dw X=1
K axe ~ Koy +W§E(E +E(H) AT)}5 dX|X i @b
adw, o arw| ¥t
{KZ dX3} dx?ly—g =0, (42)
1 (du | 1(dw az (au | 1 [(aw)? X=1 _

{m (d_X + E(d_X) - (XAT) b Xz (dx + E(d_X) - O»’AT) — Ng + P }6U|3xZ5 = 0, (43)

Ky d (4U | 10aw X=1 _
by’ aX (d_X + > (d_X) AT)}ad_X Yo =0. (44)

4. RESULTS

The temperature effects on the buckling of nonlinear micro beams are studied for immovable and movable
boundaries (Fig. 1). For each case two boundary conditions, hinged-hinged and clamped-clamped are
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investigated. Results are verified using previous works. It must be noted that initial axial compressive

force N, is constant.

(a) (b)
Fig. 1. Schematic diagram of microbeam: a) immovable axial boundary condition
b) movable axial boundary condition

a) Immovable axial boundary condition

In this state the general boundary conditions from Egs. (40), (43), (44) become
w()=w(1) =0, (45)

U@) =U() =0, (46)

W'+ W' — aTy’

! 1 ! !
= U+ W —anT) |X:1 =0, (47)

where ' represents derivative with respect to X. According to Eq. (39)

boiz(U' +ow? - aAT) — N, = C;, sinh <J%X) + Cy, cosh (JLK_ZX) + Cys, (Ky # 0) (48)
Applying boundary conditions of Eq. (47) we get
Cll = 0! C12 = O' (49)
So,
~ 1 1,
N=—W(U +1W? - alT) + N, (50)

where N is independent of X. Note that if K, = 0, Eq.(50) results directly from Eq.(39). Taking the
derivative of Eq.(50) relative to X and rearranging it

v =-(Ew? - anr), (51)
Taking two time integration with respect to X
U=—[ (AW = ahT)dX + CpuX + Cp (52)
applying Eq. (45)
Cor = J; (GW'? = adT) dX, C,, =0, (53)
sO
~ 1 (11,
N =5y (GW? - abT)dx + N, (54)
The axial force due to thermal effect is defined by
Ny = = J, aATdX.
° (55)

If temperature distribution is assumed to be linear, N; becomes
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Ny =5 (56)

where T,, T, are temperatures at the micro beam ends and it is assumed that T, > T;.
Equation (50) is substituted in Eq. (38) to get

AW e W G AW 57
Ko —Kigxa axz 0. (57)

Solution of Eq. (57) is
W = C; sin(4,X) + C, cos(4,X) + C;3 sinh(1,X) + C, cosh(1,X) + CsX + Cg, (58)

where
—K1+ |K12+4K,N 05 Kq+ /K12+4K21V 05
M=) =C—5—)", (59)
2 2

and it is assumed that

Ki*+4K,N >0 (60)

1. Buckling of hinged-hinged beam with immovable axial boundaries

Equations (41) and (42) imply the boundary conditions

a*w _d*w

dx*ly—g ~ dx*ly—q =0, (61)
w"0)=w"@1) =0. (62)
With these boundary conditions the non-trivial solution is
W = C;sin(nnX), (n=1,2,..), (63)
N = K, (nm)? + K, (nm)*, (64)

which satisfies Eq.(60), so the critical buckling load of modified strain gradient theory becomes

NS = (Np + No)&¥ = Ky (nm)? + K, (nm)*

- <1 + bo’;E (2L3(1 —2v)? + 13+ 213 (1 + v)2)> (nm)? (65)

+§(2Lg(1 —2w)? +23(1+ v)z) (nm)*.

If temperature difference and Poisson’s effects are neglected, Eq. (65) reduces to the results presented by
Akgoz and Civalek [11]. For numerical illustration it is assumed that the beam is made of epoxy with
E = 1.44 Gpa,v = .38,a = 22.4 u/°C[11, 12]. If not stated, additional material length scale parameters are
set to Ly=1L; =L, =17.6um for MSGT and Ly =L, = 0,L, = 17.6um for MCST. Figure 2 shows the
critical buckling load for various ratios of length to thickness based on the modified strain gradient theory
(MSGT) for v = 0 and v = 0.38. The cross section is the same as [11]: a rectangle with thickness h and
width b = 2h and length L = 20h. The results are compared with Akgdz, Civalek [11] and show exact
consistency with MSGT(v = 0). Figure 2 shows that if the Poisson’s ratio is not zero, buckling load
decreases. By increasing the ratio of length to thickness the size effect decreases and there is no significant
difference between the two cases.
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Fig. 2. Critical buckling load Na (uN) for simply supported beam for various theories (h = 17.6 um)

For the special case L, = L; = 0, buckling load of modified couple stress theory (MCST) is computed

while Ly = L; = L, = 0 leads to the classical Euler-Bernoulli buckling load

NMC = (1 + %LZZ) (nm)?,
—~ nEL2
NS = === (nm)?.

Comparing Egs. (65-68) we conclude that

NMS > NMC > NE,
In the case N, = 0 the critical temperature difference becomes
2
(T, = TN = 2 (K, (nm)? + K, (nm)*)
2. Buckling of clamped-clamped beam with immovable axial boundaries

Equations (41) and (42) imply the boundary conditions

aw
dax3

_aw
ax3

= 0’
X=1

X=0
w'(0) = W'(1) = 0.

Applying Egs. (45), (70), (71) and (58) we get the non-trivial solution as
W = Cy(cos(nnX) — 1), (n=12,..)

N = K,(2nm)? + K,(2nm)*

So the critical buckling load of modified strain gradient theory becomes

NMS = (N; + N)MS = K, (2nm)? + K,(2nm)*

= <1 e (ZL%(l —20)? + 12+ 21201 + 17)2)> (2nm)?

225

+%(2L%,(1 — 2w + 2131+ v)z) (2nm)*.

(66)

(67)

(68)

(69)

(70)

(71

(72)

(73)

(74

For the special case L, = L, = 0 buckling load of modified couple stress theory is computed while

Ly =L, = L, = 0 leads to the classical Euler-Bernoulli buckling load
NMC = (1 + %Lzz) (2nm)?,

October 2014
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e - nEl2
cr EI

= (2nm)2. (76)

In the case N, = 0 the critical temperature difference becomes

2by?

(T, - Ty cMrS = T{K1(2m'f)2 + Kz(zn”)4} (77)

In the following numerical examples circular cross sections with radius of gyration r are considered.
Figures 3a and 3b show variation of critical buckling load NV, with respect to L/r based on four different
approaches (MSGT(v = 0), MSGT(v = 0.38), MCST, CT) for hinged-hinged and clamped-clamped
boundary conditions. As the figures indicate, for lower values of L/r different results are obtained for
buckling load, while for higher L/r results for all approaches converge. MSGT predicts the highest critical
loads when Poisson’s effect is ignored and MSCT shows lower buckling load as compared to MSGT. CT
results are significantly different as compared to MSGT and MSCT because of the importance of
additional material length scale parameters. As expected, clamped-clamped boundary conditions predict
larger values for the buckling load. Figure 4 shows that for large L/r thermal buckling can occur in a
range of 100 °C temperature difference, which indicates when ratio of length to radius of gyration is high,
the microbeam is very sensitive to thermal buckling.

7 -
6 -
E
+ 5 -
©
£ —— MSGT v=0
34
i - - - MSGTv=0.38
— 3 i
g MCST
=5
S 2 < CT
o
1 ] -
0 — T T T T s _'I ————— == - - == I_;
3 5 7 9 U 13 15 17 19
(a)
60 -
50 -
-
z
5 40 1 ——— MSGT v=0
o]
830 4 - - - MSGTv=0.38
— \
= 20 -
[*]
=3
[<'a]
10 -
0
3 5 7 9 Lr 11 13 15 17 19

(b)
Fig. 3. Critical buckling load Na+NT (uN) for a) hinged-hinged b) clamped-clamped beam
for various theories (L, = 17.6 um,r = 2um)
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100 - /
/
/
2 80 - HH
2 - =-CC 7
) /
[T *]
e € 60 /
£ 3 ’
& 7
T 040 - /
kS, ’,
b= Pd
S 7
20 - _-
- - -
O T _; - T T 1
0 0.01 0.02 r/L  0.03 0.04 0.05

Fig. 4. Critical Temperature Difference (°C) hinged-hinged(H-H), clamped-clamped(C-C)
beam by MSGT (L, = 17.6 um,r = 2um)

Figure 5 shows the ratio of buckling load to Euler Buckling load versus small scale parameter using
various approaches (MSGT(v = 0), MSGT(v = 0.38), MCST) for hinged-hinged and clamped-clamped
boundary conditions. For MSGT it is assumed that L, = L; = L,. MSGT with v = 0 predicts the highest
buckling load and as the scale parameters increase the discrepancy in the buckling load as predicted by
various approaches also increases.

600 -
——— MSGT v=0

500 - - = = MSGT v=0.38
MCST v=0

B

o

o
1

Non-dimensional Buckling
is)
=)

~

o

o
)

—— MSGT v=0
= = =MSGT v=0.38
MCST v=0

&

o

o
1

w1

o

o
1

w
Soa
1

on-dimensional Bucklin

0 5 10 15 20 L2 25 30 35 40

(b)
Fig. 5. Non-dimensional buckling load a) hinged-hinged b)clamped-clamped
by various theories (L = 28 um,r = 2um)
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b) Movable axial boundary conditions

In this state the general boundary conditions from Eqgs.(40) , (43), (44) become

w(0)=w(1) =0, (78)
u() =0, (79-a)
1 P S K3 1 1y02 " —
Gz (v +iw™ - aar) - s U+ W —abT) = Ny + P =0, (79-b)
(v +iw? - aAT)'| =0 (80-a)
2 x=0
U'(1) =0, (80-b)
According to Eq. (42)
(U 42w - aaT) = N, = Cyy sinh <¢%X) + Cs, cosh (J%X) + Cas, (K, % 0) 81)
Applying boundary conditions of Egs. (79-b), (80-a)
C31 = 0,033 = =Py, (82)
SO
5 1 ;1,2 K; ;1.2 " 83-a
N——F(U +ow —aAT)+I22(U +iw? —aaT) + (83-a)

Ny, =Nr+ Ny + Ny = Py,

where N is independent of X and N, is the compression load induced by the presence of axial strain in the
microbeam.
If K, = 0 instead of Eqs.(81-83) we have

IV = —L(U’ +%W’2 - (ZAT) + Na = _C33 = Pxx; (83_b)

bo?
Equations (83) and (50) indicate that the presence of N,, is the result of small size parameters and

movable axial boundary condition. If Eq. (83) is substituted in the governing Eq. (38), Eq. (56) results that
its solution is in the form of Eq. (58).

1. Buckling of hinged-hinged movable axial boundaries

Equations (41), (42) imply the same boundary conditions as Egs. (61), (62). Boundary Egs. (45), (61), (62)
give the non-trivial solution as Eq. (63). So the critical buckling load of modified strain gradient theory
becomes

NCMrS = (Ny + Ng + Nyx %‘S = (P ICV;”S = Kl(nﬂ)z + KZ(T’LTL')4

= (1 S (21301 - 202 + 13+ 21201 + v)2)> (nm)? (84)

+4(2301 - 20)? + 231+ v)?) (),

where n denotes the buckling mode. The instability solutions for a hinged-hinged micro beam with
movable boundary condition is

Ne)er® = (Beder® — (Np + Ng) = Ky (nm)? + K, (nm)* — (N7 + Np)
(85)

120

= <1 S (21301 - 202 + 13+ 221301 + 17)2)> (nm)?

225
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@ Tz Ty

+§(2Lg(1 — 20)? + 212(1 + v)? )(nn)4 -

— N,

Comparing Eq.(65) with (85) we see that (N,,)S is zero for immovable boundary condition. When
Ly=L, =L, =0 and N, = 0 the results are the same as for the classical case presented by Yang and
Lim[13].

(Ne)§ = (nm)? — 2572, (86)
0

Special case with L, = L; = 0 presents the modified couple stress result

Ny = ( )(T“T)Z = TZ il (87)

2

Comparing Egs. (85-87), we conclude
(NXX cr > (Nxx) > (Nxx cre (88)

In extreme case (N,,)3¢ = 0 the critical temperature difference is obtained

(T, = T = 2220, () + Ky (n)* — Ny, (89)

Increasing (T, — T;) decreases the compressive load induced by the presence of axial strain until (T, — T;)
reaches (T, — T;). where all compressive strain in the microbeam is due to thermal strain. Investigating
Eq. (81) shows that P, is the buckling load and in contrast to immovable axial boundary conditions
N7, N, would not yield buckling in immovable axial boundary conditions, the induced compressive axial
load N,, can be changed. This means that the thermal effect in movable and immovable axial boundary
conditions are completely different and as discussed, critical temperature difference for the two cases has

its own meaning.
2. Buckling of clamped-clamped movable axial boundaries

Eqgs.(41) and (42) imply the boundary conditions as Egs.(70), (71). Boundary Egs.(45), (70), (71) lead to
the non-trivial solution as Eq.(72). So the critical buckling load of modified strain gradient theory

becomes

NcMrS = (Ny + Ng + Nyx %‘S = (Pxx cr Kl(ZTLT[)Z + KZ(ZTLTT)4

g

b (2131 - 20)% + 13 + 22 L3 (1 + v)? )) (n2m)? (90)

225

+§(2Lg(1 —2w)? +213(1+ v)z) (2nm)*,

where n denotes the mode of buckling. The instability solutions for a clamped-clamped micro beam with
movable boundary condition is

(Nxx)Ms = (Pxx) (NT + Na) = Kl(znn)z + KZ(ZnT[)4 - (NT + Na)

o

§(2L2 (1—2v)2 +313(1 + v)? ) (2nm)* —

(2301 - 20)% + 13 + 2213 (1 + v) )) (2nm)? o1)

@ T2 Ty

L~ N,
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EquationS (90) and (91) show that (N,,)¥5 is zero for immovable boundary condition. When L, = L; =
L, =0 and N, = 0 the results are the same as for the classical theory presented by Yang and Lim[13].

(NS = (2nm)? =520, (92)
bo? 2

Special case with L, = L, = 0 presents the modified couple stress result

Ty —T;
(NeE = (14 55513) (nm)? — 5222, (93)

In the limiting case (N,,)¥5 = 0, the critical temperature difference is obtained
2

(T, = TYS =2 (K, (2nm)? + K, (2nm)* — N}, ©4)

In the following numerical examples, N, = 0. Figure 6 shows the effect of temperature difference on the
non- dimensional buckling load (Nyy)¢ / (Pe)er - Larger temperature difference for larger values of L/r
decreases induced axial compressive load. It is seen that for small values of L/r, regardless of the value of
AT, all of the compressive load is due to N,,. For zero AT, (Ny ) = (P)er and we get a straight
horizontal curve in Fig. 6. Thermal effect for hinged-hinged microbeam is larger than clamped-clamped
one.

—— AT=50
- — = AT=100
AT=200

0.96 T T T T T T T T T 1
50 L/r 60 70 80 90 100

(a)
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0.995 -
0.994 -
0.993 - _
0.992 - _

NonDimensional Buckling Load

0.991

0.99 T

20

30

40

50 Lr

60

70

(b)
Fig. 6. Effect of temperature difference on non-dimensional buckling load a) hinged-hinged b)
clamped-clamped by various theories (L, = 17.6 um,r = 2um)
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Figure 7 indicates that (N,,)M5/(N,,)SEt increases with increasing small scale parameters. It is
observed that increasing temperature difference decreases the ratio between two critical load computed by
two theories: (N, )M5, (N, )SE .

Studying the effects of geometrical shape plays an important role in investigating the buckling
behavior of both macro/micro structures [16, 28-31]. Figure 8 shows ratio of the critical temperature
difference (T, — T))MS/(T, — T, vs. r/L. Tt is seen that this ratio and stiffness of microbeam increases
with increasing r/L and increasing small scale parameters. For small values of /L there is no significant
difference between MSGT, MCST, CT.

Figure 9 shows the variation of thermal buckling load vs. small scale parameter. It is seen that by
increasing the small scale parameter the thermal buckling load increases. For higher modes the rate of
increasing of thermal buckling load with small scale parameter is higher. This was expected because it is

generally known that the small scale parameter effect is more significant for higher modes.

1.9 - '
-]
©
S
®17
=
a
e 5
s
23 100
£ .
£ - -~ AT=200
€11 - _
st
0-9 T T T T T T T 1
0 0.01 0.02 0.03  L0/L0.04 0.05 0.06 0.07 0.08
(a)
1.25 - 52
e
g 12 -
[-T1]
£
X 1.15 - AT=0
a
T e AT=50
2 AT=100
Q -
EN - - -~ AT=200
5 =
§ 1 === ---
§ 1 ===
0-95 T T T T T T T 1
0 0.005 0.01 0.015 10/L0.02 0.025 0.03 0.035 0.04

(b)
Fig. 7. Effect of temperature difference on non-dimensional buckling load for various additional material
parameters a) hinged-hinged b)clamped-clamped by various theories (L = 28 um,r = 2um)
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Fig. 8. Non-dimensional critical temperature difference a) hinged-hinged b)
clamped-clamped by various theories (L = 28 um,r = 2um)
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Fig. 9. Non-dimensional buckling load for a hinged-hinged microbeam with immovable boundary
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5. CONCLUSION

This paper presented a new model for Euler-Bernoulli microbeam based on higher-order strain gradients
for thermal buckling of microbeam, associated with small scale parameters. The results showed that the
critical buckling load significantly increases as a result of considering the small scale parameters. This
demonstrates that microbeam stiffness is larger due to small size effect. Poisson’s effect seriously
decreases the critical buckling load on the basis of modified strain gradient theory and must be considered,
although it does not affect uniaxial critical buckling load on the basis of modified couple stress theory and
classical theory. In the case of immovable axial boundary conditions, thermal loading could lead to
buckling, while for the movable axial boundary conditions thermal loading cannot lead to buckling of
microbeam but changes the compressive load induced in the microbeam. A higher critical temperature
difference is observed for larger ratios of the radius of generation to length. Buckling load of microbeam
decreases with increasing temperature difference.
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