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Abstract– In this paper, thermal effects in nonlinear buckling analysis of micro beams is 
investigated. Modified strain gradient theory with nonlinear von-Karman strain-displacement 
relations and small scale parameters are used to derive the buckling behavior of micro beams. The 
Poisson’s effect is included and its significance is demonstrated. Buckling behavior for two 
different cases: 1) immovable axial boundary condition 2) movable axial boundary condition, are 
studied and for each one the results for hinged-hinged and clamped-clamped beams are presented. 
The analysis shows that modified strain gradient theory leads to a higher critical buckling load in 
comparison with the classical and couple- stress theories. The results are verified using previous 
related works.           
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1. INTRODUCTION 
 

Non-classical theories play an important role in the analysis of one-dimensional micro/nano structures. 

Mohammadi-Alasti et al. [1] studied the mechanical behavior of a functionally graded cantilever micro-

beam subjected to nonlinear electrostatic pressure and temperature changes. In addition to the Volume 

Fractional Rule of material, exponential function has been used for representation of continuous gradation 

of the material properties through micro-beam thickness. Yao and Han [2] studied the thermal effect on 

axially compressed buckling of a double-walled carbon nanotube. The effects of temperature change, 

surrounding elastic medium and van der Waals forces between the inner and outer nanotubes were taken 

into account. Wang et al [3] presented the thermal buckling properties of carbon nanotube with small scale 

effects. Based on the nonlocal continuum theory and the Timoshenko beam model, the governing equation 

was derived. Axial buckling characteristics of single-walled carbon nanotubes (SWCNTs) including 

thermal environment effect were studied by Ansari et al. [4]. It was observed that the difference between 

the thermal axial buckling responses of SWCNTs relevant to various boundary conditions is more 

prominent for higher values of nonlocal elasticity constant. Based on theory of thermal elasticity 

mechanics, Zhang et al. [5] developed elastic multiple column model for column buckling of MWNTs 

with large aspect ratios under axial compression coupling with temperature change. They concluded that 

the effect of temperature change on the buckling strain is dependent on the temperature changes, aspect 

ratios, and the buckling modes of carbon nanotubes. Zhang and Shen [6] investigated the buckling and 

postbuckling analysis of single-walled carbon nanotubes with (n, n)- and (n, 0)-helicity, when acted upon 
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by the destabilizing loads of axial compression, torsion and external pressure, by using molecular 

dynamics simulation. Zhang and Shen [7] also studied the thermal buckling of initially compressed single-

walled carbon nanotubes subjected to a uniform temperature rise by using molecular dynamics 

simulations. A nonlocal elastic shell model was developed to investigate the axially compressed buckling 

response of multi-walled carbon nanotubes considering thermal environment effect by Ansari et al. [8]. 

They showed that the effect of small-scale is more prominent for MWCNTs having smaller diameters and 

a fewer number of walls. Şimşek and Yurtcu [9] presented the static bending and buckling of a 

functionally graded nanobeam based on the nonlocal Timoshenko and Euler–Bernoulli beam theory. The 

material properties of the FG nanobeam were assumed to vary in the thickness direction. Lam et al. [10] 

presented new formulation of strain gradient elasticity with small scale parameters. Akgöz and Civalek 

[11] studied analytical solution of stability problem for axially loaded nano-sized beams based on strain 

gradient elasticity and modified couple stress theories. Given the importance of thermal stresses in 

microelectronic packaging, He et al. [12] investigated thermal characterization of epoxies. Yang and 

Lim[13] analyzed thermal effects on buckling of nano columns with movable axial boundary conditions 

and with von-Kármán nonlinearity based on nonlocal stress theory. Kong et al. [14] solved analytically the 

static and dynamic problems of Bernoulli–Euler beams based on strain gradient elasticity theory. Ma et al. 

[15] developed a microstructure-dependent Timoshenko beam model using a variational formulation. 

Their analysis was based on a modified couple stress theory and Hamilton's principle. The new model 

contained a material length scale parameter and could capture the size effect, unlike the classical 

Timoshenko beam theory.  Analytical solutions of a general third-order plate theory that accounts for the 

power-law distribution of two materials through thickness and microstructure-dependent size effects were 

presented by Kim and Reddy [16]. The modulus of elasticity and the mass density were assumed to vary 

only through thickness of plate, and a single material length scale parameter of a modified couple stress 

theory captured the microstructure-dependent size effects. Roque et al [17] used a modified couple stress 

theory and a meshless method to study the bending of simply supported laminated composite beams 

subjected to transverse loads. The Timoshenko beam kinematics were employed to model the beam, by a 

modified couple stress theory. Civalek and Demir [18] developed an elastic beam model using nonlocal 

elasticity theory for the bending analysis of microtubules based on the Euler–Bernoulli beam theory. The 

size effect was taken into consideration using the Eringen’s non-local elasticity theory using the method of 

differential quadrature method (DQM). Akgöz and Civalek [19] studied the bending analysis of micro-

sized beams based on the Bernoulli-Euler theory within the modified strain gradient elasticity. 

In this paper, a new nonlinear formulation considering Poisson’s parameter and temperature effect is 

presented for micro beams. The formulation is based on modified strain gradient theory and subsequently, 

buckling behavior is investigated for two different boundary conditions. Results are verified using some 

previous related works. 

 
2. PRELIMINARIES 

 
In the classical linear theory of elasticity, the constitutive relations between the stress and strain is given 
by 

                		 ௜௝ߪ ൌ ௞௞݁ߣ
௘௟ ௜௝ߜ ൅ ௜௝݁ߤ2

௘௟, (1)

where ߣ, ,࣌ are Lame’s coefficients and ߤ  we ࢒ࢋࢋ are stress and strain tensors, respectively. Solving for ࢒ࢋࢋ
get  
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               					 ݁௜௝
௘௟ ൌ

ଵ

ଶఓ
ቀߪ௜௝ െ ௜௝ߜߣ

ఙೖೖ
ଷఒାଶఓ

ቁ, (2)

Considering the effects of thermal expansion, the strain is written as 

                  	 ௜௝ߝ ൌ ݁௜௝
௘௟ ൅ ሻ, (3)ݔሺ࣮∆ߙ௜௝ߜ

where ߙ is the thermal expansion coefficient of the material and ∆࣮ሺݔሻ is the temperature difference with 
respect to the free stress state. Combining Eqs. (2), (3) leads to 

௜௝ߪ						       ൌ ௞௞ߝሺߣ െ ௜௝ߜሻܶ∆ߙ3 ൅ ௜௝ߝ൫ߤ2 െ ൯ (4)࣮∆ߙ௜௝ߜ

Comparing Eq.(4) with Eq.(1) suggests that the total strain ݁௜௝ as defined by 

                     				 ݁௜௝ ൌ ௜௝ߝ െ (5) ,࣮∆ߙ௜௝ߜ

can be used to find the stress, and consequently, 

௜௝ߪ						                 ൌ ௜௝ߜ௜௝݁ߣ ൅ ௜௝.    (6)݁ߤ2

Lam et al. [10] presented the modified strain gradient theory that uses the stored strain energy ݑ௠ in a 
continuum made of a linear elastic material occupying region ɸ with infinitesimal deformations and 
written as 

                     										 ௠ݑ						 ൌ
ଵ

ଶ
׬ ቀߪ௜௝ߝ௜௝ ൅ ௜ߛ௜݌ ൅ ߬௜௝௞

ሺଵሻߟ௜௝௞
ሺଵሻ ൅ ݉௜௝

௦ ߯௜௝
௦ ቁ ɸ,ݒ݀  (7)

where  
                           ௜ߛ ൌ ௠௠,௜, (8)ߝ

௜௝௞ߟ								                             
ሺଵሻ ൌ

ଵ

ଷ
൫ ௝݁௞,௜ ൅ ݁௞௜,௝ ൅ ݁௜௝,௞൯ െ

ଵ

ଵହ
௜௝൫݁௠௠,௞ߜ ൅ 2݁௠௞,௠൯ 

                                  								െ
ଵ

ଵହ
௝௞൫݁௠௠,௜ߜൣ ൅ 2݁௠௜,௠൯ ൅ ௞௜൫݁௠௠,௝ߜ ൅ 2݁௠௝,௠൯൧, 

(9)

                                 ߯௜௝
௦ ൌ

ଵ

ଶ
൫ߠ௜,௝ ൅ ௝,௜൯, (10)ߠ

                                  ௜ߠ ൌ
ଵ

ଶ
ሺ݈ܿݎݑሺ࢛ሻሻ௜. (11)

 
,௜ݑ  and ,ࢽ ௜ represent the components of the displacement vector ࢛, the dilation gradient vectorߠ	݀݊ܽ	௜ߛ
infinitesimal rotation vector ࣂ. 

For a linear isotropic elastic material, the components of the stresses are related to the kinematic 
parameters by (Lam et al. [10]) 

௜݌                                    ൌ ଴݈ߤ2
ଶߛ௜ (12)

                                     ߬௜௝௞
ሺଵሻ ൌ ଵ݈ߤ2

ଶߟ௜௝௞
ሺଵሻ (13)

                                  ݉௜௝
௦ ൌ ଶ݈ߤ2

ଶ߯௜௝
௦  (14)

݈଴, ݈ଵ, ݈ଶ	are material length scale parameters related to dilation gradients, deviatoric stretch gradients and 
rotation gradients, respectively. 
 

3. GOVERNING EQUATION 
 
In the following formulation, the x-coordinate is taken along the length of the beam, the z-coordinate along 

the thickness of the beam, and the y-coordinate is taken along the width of the beam. A uniform 

homogeneous straight beam with length L is considered. The centroid of each section lies on the plane	z ൌ

0. The non-zero displacement field of an Euler-Bernoulli beam is expressed as 
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ாݑ				                       ൌ ሻݔሺݑ െ ݖ
ௗ௪ሺ௫ሻ

ௗ௫
,ܹா ൌ  ሻ, (15)ݔሺݓ

where ݑா,ܹா	are the axial and transverse displacements vector and ݓ,ݑ represents these values in the 
centroid. In order to maintain consistency with uniaxial assumption we let 

                      ݁ଶଶ ൌ ݁ଷଷ ൌ െ݁ݒଵଵ,      (16)
 

 

where ݒ is the Poisson’s ratio. Unlike many works, e.g.; [11, 14], here the Poisson’s effect is not ignored 
and is included as an ad-hoc assumption in Eq. (16) and in the sequel. The nonlinear von-Karman strain is 
written as 

ଵଵߝ			                            ൌ
ௗ௨

ௗ௫
െ ݖ

ௗమ௪

ௗ௫మ
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
. (17)

Substituting in Eq. (5), we get 

                              			݁ଵଵ ൌ
ௗ௨

ௗ௫
െ ݖ

ௗమ௪

ௗ௫మ
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
െ (18) ,࣮∆ߙ

Using Eqs. (12-14) the non-zero components of kinematic parameters and higher order stresses are 

ଵߛ				                      ൌ ሺ1 െ ሻሺݒ2
ௗమ௨

ௗ௫మ
െ ݖ

ௗయ௪

ௗ௫య
൅

ௗ௪

ௗ௫

ௗమ௪

ௗ௫మ
െ ,ሻ࣮∆ߙ ଷߛ ൌ െሺ1 െ ሻݒ2

ௗమ௪

ௗ௫మ
  

(19)

				߯ଵଶ
௦ ൌ ߯ଶଵ

௦ ൌ െ
1
2
݀ଶݓ
ଶݔ݀

 (20)

ଵଵଵߟ				
ሺଵሻ ൌ

2
5
ሺ1 ൅ ሻݒ ቆ

݀ଶݑ
ଶݔ݀

െ ݖ
݀ଷݓ
ଷݔ݀

൅
ݓ݀
ݔ݀

݀ଶݓ
ଶݔ݀

െ ߙ
݀ሺ∆࣮ሻ

ݔ݀
ቇ, 

ଵଵଷߟ				
ሺଵሻ ൌ ଷଵଵߟ

ሺଵሻ ൌ ଵଷଵߟ
ሺଵሻ ൌ െ

4
15

ሺ1 ൅ ሻݒ
݀ଶݓ
ଶݔ݀

, 

ଵଶଶߟ				
ሺଵሻ ൌ ଵଷଷߟ

ሺଵሻ ൌ ଶଵଶߟ
ሺଵሻ ൌ ଶଶଵߟ

ሺଵሻ ൌ ଷଵଷߟ
ሺଵሻ ൌ ଷଷଵߟ

ሺଵሻ ൌ
െ1
5
ሺ1 ൅ ሻݒ ቆ

݀ଶݑ
ଶݔ݀

െ ݖ
݀ଷݓ
ଷݔ݀

൅
ݓ݀
ݔ݀

݀ଶݓ
ଶݔ݀

െ ߙ
݀ሺ∆࣮ሻ
ݔ݀

ቇ, 

ଶଶଷߟ				
ሺଵሻ ൌ ଶଷଶߟ

ሺଵሻ ൌ ଷଶଶߟ
ሺଵሻ ൌ

1
15

ሺ1 ൅ ሻݒ
݀ଶݓ
ଶݔ݀

, ଷଷଷߟ
ሺଵሻ ൌ

1
5
ሺ1 ൅ ሻݒ

݀ଶݓ
ଶݔ݀

. 

(21)

ଵଵߪ				 ൌ ଵଵ݁ܧ ൌ ሺܧ
ݑ݀
ݔ݀

െ ݖ
݀ଶݓ
ଶݔ݀

൅
1
2
൬
ݓ݀
ݔ݀
൰
ଶ

െ ሻ, (22)࣮∆ߙ

ଵ݌				 ൌ ଴݈ߤ2
ଶሺ1 െ ሻሺݒ2

݀ଶݑ
ଶݔ݀

െ ݖ
݀ଷݓ
ଷݔ݀

൅
ݓ݀
ݔ݀

݀ଶݓ
ଶݔ݀

െ ,ሻ࣮∆ߙ ଷ݌ ൌ െ2݈ߤ଴
ଶሺ1 െ ሻݒ2

݀ଶݓ
ଶݔ݀

 (23)

			݉ଵଶ
௦ ൌ ݉ଶଵ

௦ ൌ െ݈ߤଶ
ଶ ݀

ଶݓ
ଶݔ݀

, (24)

			߬ଵଵଵ
ሺଵሻ ൌ ଵ݈ߤ

ଶ 4
5
ሺ1 ൅ ሻݒ ቆ

݀ଶݑ
ଶݔ݀

െ ݖ
݀ଷݓ
ଷݔ݀

൅
ݓ݀
ݔ݀

݀ଶݓ
ଶݔ݀

െ ߙ
݀ሺ∆࣮ሻ
ݔ݀

ቇ, 

			߬ଵଵଷ
ሺଵሻ ൌ ߬ଷଵଵ

ሺଵሻ ൌ ߬ଵଷଵ
ሺଵሻ ൌ െ݈ߤଵ

ଶ 8
15

ሺ1 ൅ ሻݒ
݀ଶ

ଶݔ݀
, 

			߬ଵଶଶ
ሺଵሻ ൌ ߬ଵଷଷ

ሺଵሻ ൌ ߬ଶଵଶ
ሺଵሻ ൌ ߬ଶଶଵ

ሺଵሻ ൌ ߬ଷଵଷ
ሺଵሻ ൌ ߬ଷଷଵ

ሺଵሻ ൌ
െ2
5
ଵ݈ߤ

ଶሺ1 ൅ ሻݒ ቆ
݀ଶݑ
ଶݔ݀

െ ݖ
݀ଷݓ
ଷݔ݀

൅
ݓ݀
ݔ݀

݀ଶݓ
ଶݔ݀

െ ߙ
݀ሺ∆࣮ሻ
ݔ݀

ቇ, 

(25)
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           			߬ଵଶଶ
ሺଵሻ ൌ ߬ଵଶଶ

ሺଵሻ ൌ ߬ଵଶଶ
ሺଵሻ ൌ

ଶ

ଵହ
ଵ݈ߤ

ଶሺ1 ൅ ሻݒ
ௗమ௪

ௗ௫మ
, ߬ଷଷଷ

ሺଵሻ ൌ
ଶ

ହ
ଵ݈ߤ

ଶሺ1 ൅ ሻݒ
ௗమ௪

ௗ௫మ
. 

Due to the residual stress, the initial axial compressive force ௔ࣨ is induced in the beam. The cross 

section area is denoted by ܣ, area moment inertia by ܫ and length by ܮ. Based on Eq.(7) and considering 

the effect of ௔ࣨthe total strain energy becomes 

                  			 	࣯ ൌ
ଵ

ଶ
׬ ׬ ሺܧ ൬

ௗ௨

ௗ௫
െ ݖ

ௗమ௪

ௗ௫మ
൅

ଵ

ଶ
ቀௗ௪
ௗ௫
ቁ
ଶ
െ ൰࣮∆ߙ

ଶ

஺
௅
଴  

                					൅ߤ ቀ2݈଴
ଶሺ1 െ ሻଶݒ2 ൅ ݈ଶ

ଶ ൅
ଵଶ଴

ଶଶହ
݈ଵ
ଶሺ1 ൅ ሻଶቁݒ ቀ

ௗమ௪

ௗ௫మ
ቁ
ଶ
 

                        					൅ߤ ቀ2݈଴
ଶሺ1 െ ሻଶݒ2 ൅

ସ

ହ
݈ଵ
ଶሺ1 ൅ ሻଶቁݒ ቀ

ௗమ௨

ௗ௫మ
െ ݖ

ௗయ௪

ௗ௫య
൅

ௗ௪

ௗ௫

ௗమ௪

ௗ௫మ
െ ߙ

ௗሺ∆࣮ሻ

ௗ௫
ቁ
ଶ
 

             					െ
ࣨೌ

஺
ሺ
ௗ௨

ௗ௫
െ ݖ

ௗమ௪

ௗ௫మ
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
െ  ݔ݀ܣሻሻ࣮݀∆ߙ

                					ൌ
ଵ

ଶ
׬ ሺܣܧ ൬

ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀௗ௪
ௗ௫
ቁ
ଶ
െ ൰ܶ∆ߙ

ଶ
௅
଴ െ ௔ࣨ ൬

ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀௗ௪
ௗ௫
ቁ
ଶ
െ ൰࣮∆ߙ ൅ ݇ଵ ቀ

ௗమ௪

ௗ௫మ
ቁ
ଶ
 

                   			 	൅݇ଶሺ
ௗయ௪

ௗ௫య
ሻଶ ൅

௄మ
௥మ
ቀௗ

మ௨

ௗ௫మ
൅

ௗ௪

ௗ௫

ௗమ௪

ௗ௫మ
െ ߙ

ௗሺ∆࣮ሻ

ௗ௫
ቁ
ଶ
ሻ݀ݔ, 

(26)

where  

                         					݇ଵ ൌ ܫܧ ൅ ܣߤ ቀ2݈଴
ଶሺ1 െ ሻଶݒ2 ൅ ݈ଶ

ଶ ൅
ଵଶ଴

ଶଶହ
݈ଵ
ଶሺ1 ൅  ,ሻଶቁݒ

                                ݇ଶ ൌ ܫߤ	 ቀ2݈଴
ଶሺ1 െ ሻଶݒ2 ൅

ସ

ହ
݈ଵ
ଶሺ1 ൅  ,ሻଶቁݒ

ݎ                             ൌ ሺ
ூ

஺
ሻ଴.ହ. 

(27)

The work done by axial compressive load ݌௫௫ at the end is 

                           				 ߜ ௘ࣱ௫௧ ൌ െ݌௫௫ݑߜ|௫ୀ଴
௫ୀ௅. (28)

The principle of the virtual displacement is applied 

ߜ                        ௘ࣱ௫௧ െ ࣯ߜ ൌ 0. (29)

Substituting Eqs. (26), (28) in Eq. (29) leads to 

                     					 	݇ଵ
ௗర௪

ௗ௫ర
െ ݇ଶ

ௗల௪

ௗ௫ల
െ

ௗ

ௗ௫
ሼሺܣܧ ൬

ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀௗ௪
ௗ௫
ቁ
ଶ
െ  ൰࣮∆ߙ

                       							െ
௞మ
௥మ

ௗమ

ௗ௫మ
൬
ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
െ ൰࣮∆ߙ െ ௔ࣨሻ

ௗ௪

ௗ௫
ሽ ൌ 0, 

(30)

                        							
ௗ

ௗ௫
ሼെܣܧ ൬

ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
െ ൰࣮∆ߙ ൅

௞మ
௥మ

ௗమ

ௗ௫మ
൬
ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
െ ൰࣮∆ߙ ൅ ௔ࣨሽ ൌ 0, (31)

                             			 			ሼെ݇ଵ
ௗయ௪

ௗ௫య
൅ ݇ଶ

ௗఱ௪

ௗ௫ఱ
൅

ௗ௪

ௗ௫
ሺܣܧ ൬

ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀௗ௪
ௗ௫
ቁ
ଶ
െ  ൰࣮∆ߙ

                              							െ
௞మ
௥మ

ௗమ

ௗ௫మ
൬
ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
െ ൰࣮∆ߙ െ ௔ࣨሻሽݓߜ|௫ୀ଴

௫ୀ௅ ൌ 0, 

(32)

                           							ሼ݇ଵ
ௗమ௪

ௗ௫మ
െ ݇ଶ

ௗర௪

ௗ௫ర
൅

௞మ
௥మ

ௗ௪

ௗ௫

ௗ

ௗ௫
൬
ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
െ ߜ൰ሽ࣮∆ߙ

ௗ௪

ௗ௫
ቚ
௫ୀ଴

௫ୀ௅
ൌ 0, (33)
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                                		 ሼ݇ଶ
ௗయ௪

ௗ௫య
ሽ ߜ

ௗమ௪

ௗ௫మ
ቚ
௫ୀ଴

௫ୀ௅
ൌ 0, (34)

                      						ሼܣܧ ൬
ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
െ ൰࣮∆ߙ െ

௞మ
௥మ

ௗమ

ௗ௫మ
൬
ௗ௨

ௗ௫
൅

ଵ

ଶ
ቀ
ௗ௪

ௗ௫
ቁ
ଶ
െ ൰࣮∆ߙ െ ௔ࣨ ൅ ௫ୀ଴|ݑߜ௫௫ሽ݌

௫ୀ௅ ൌ 0, (35)

                                   						ሼ
௞మ
௥మ

ௗ

ௗ௫
൬ௗ௨
ௗ௫
൅

ଵ

ଶ
ቀௗ௪
ௗ௫
ቁ
ଶ
െ ߜ൰ሽ࣮∆ߙ

ௗ௨

ௗ௫
ቚ
௫ୀ଴

௫ୀ௅
ൌ 0. (36)

Equations (30) and (31) describe the governing equations of the nonlinear Euler-Bernoulli beam, while 
Eqs. (32-36) represent the boundary conditions. Equations (32), (33), (35) denote the classical boundary 
conditions and Eqs.(34) and (36)  show the non-classical boundary conditions resulting from higher 
stresses. If Poisson’s effect, temperature differences and nonlinear terms are neglected, the Eqs.(30-36) 
reduce to those presented by Akgöz and Civalek[11]. Equations (27, 28, 30-36) indicate that if ݈଴ ൌ ݈ଵ ൌ 0 
(like modified couple stress theory [20-28], classic theory) the Poisson’s effect can be neglected, but if 
݈଴ ് 0, ݈ଵ ് 0 (like modified strain gradient theory) the Poisson’s effect must be considered. Introducing 
the following variables, non-dimensional form of Eqs. (27-33) are derived 

            						ܹ ൌ
௪

௅
, ܷ ൌ

௨

௅
, ܺ ൌ

௫

௅
, ܾ଴ ൌ

௥

௅
, ௔ܰ ൌ

ࣨೌ ௅మ

ாூ
, ଵܭ ൌ

௞భ
ாூ
, ଶܭ ൌ

௞మ
ாூ௅మ

, ௫ܲ௫ ൌ
௣ೣೣ௅మ

ாூ
, 

              						∆ܶሺܺ, ሻݐ ൌ ∆࣮ሺܺܮ, ,ሻݐ ଵܭ ൌ 1 ൅
ఓ

௕బ
మா
ቀ2ܮ଴

ଶሺ1 െ ሻଶݒ2 ൅ ଶܮ
ଶ ൅

ଵଶ଴

ଶଶହ
ଵܮ
ଶሺ1 ൅  ,ሻଶቁݒ

ଶܭ                     ൌ
ఓ

ா
ቀ2ܮ଴

ଶሺ1 െ ሻଶݒ2 ൅
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, 

(37)

ଵܭ							            
ௗరௐ
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4. RESULTS 

 
The temperature effects on the buckling of nonlinear micro beams are studied for immovable and movable 

boundaries (Fig. 1). For each case two boundary conditions, hinged-hinged and clamped-clamped are 
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                          ்ܰ ൌ
ఈ

௕బ
మ

మ்ି భ்

ଶ
 (56)

where ଶܶ, ଵܶ are temperatures at the micro beam ends and it is assumed that ଶܶ ൒ ଵܶ. 
Equation (50) is substituted in Eq. (38) to get 

ଶܭ						                          
ௗలௐ

ௗ௑ల
െ ଵܭ

ௗరௐ

ௗ௑ర
െ ෩ܰ ௗమௐ

ௗ௑మ
ൌ 0. (57)

Solution of Eq. (57) is 

                              						ܹ ൌ ଵܥ sinሺߣଵܺሻ ൅ ଶܥ cosሺߣଵܺሻ ൅ ଷܥ sinhሺߣଶܺሻ ൅ ସܥ coshሺߣଶܺሻ ൅ ହܺܥ ൅ ଺, (58)ܥ

where 

ଵߣ                                  ൌ ሺ
ି௄భାට௄భ

మାସ௄మே෩

ଶ௄మ
ሻ଴.ହ, ଶߣ ൌ ሺ

௄భାට௄భ
మାସ௄మே෩

ଶ௄మ
ሻ଴.ହ, (59)

and it is  assumed that 
                           ଵܭ

ଶ ൅ ଶܭ4 ෩ܰ ൒ 0 (60)

1. Buckling of hinged-hinged beam with immovable axial boundaries 

Equations (41) and (42) imply the boundary conditions 

                         					 ௗ
రௐ

ௗ௑ర
ቚ
௑ୀ଴

ൌ ௗరௐ

ௗ௑ర
ቚ
௑ୀଵ

ൌ 0, (61)

                         			 ܹᇱᇱሺ0ሻ ൌ ܹᇱᇱሺ1ሻ ൌ 0. (62)

 With these boundary conditions the non-trivial solution is 

                             ܹ ൌ ଵܥ sinሺ݊ܺߨሻ, ሺ݊ ൌ 1,2, … ሻ, (63)

                              ෩ܰ ൌ ሻଶߨଵሺ݊ܭ ൅ ሻସ, (64)ߨଶሺ݊ܭ

which satisfies Eq.(60), so the critical buckling load of modified strain gradient theory becomes 

                     						 ෩ܰ௖௥ெௌ ൌ ሺ்ܰ ൅ ௔ܰሻ௖௥ெௌ ൌ ሻଶߨଵሺ݊ܭ ൅  ሻସߨଶሺ݊ܭ

                           						ൌ ቆ1 ൅ ఓ

௕బ
మா
ቀ2ܮ଴ଶሺ1 െ ሻଶݒ2 ൅ ଶଶܮ ൅

ଵଶ଴

ଶଶହ
ଵଶሺ1ܮ ൅ ሻଶቁቇݒ ሺ݊ߨሻଶ 

                          						൅ ఓ

ா
ቀ2ܮ଴ଶሺ1 െ ሻଶݒ2 ൅ ସ

ହ
ଵଶሺ1ܮ ൅ ሻଶቁݒ ሺ݊ߨሻସ. 

(65)

If temperature difference and Poisson’s effects are neglected, Eq. (65) reduces to the results presented by 

Akgoz and Civalek [11]. For numerical illustration it is assumed that the beam is made of epoxy with 

ܧ ൌ ,ܽ݌ܩ	1.44 ݒ ൌ .38, ߙ ൌ 22.4 ߤ Ԩ⁄ 	[11, 12]. If not stated, additional material length scale parameters are 

set to  ܮ଴ ൌ ଵܮ ൌ ଶܮ ൌ ଴ܮ for MSGT and ݉ߤ17.6 ൌ ଵܮ ൌ 0, ଶܮ ൌ  for MCST. Figure 2 shows the ݉ߤ17.6

critical buckling load for various ratios of length to thickness based on the modified strain gradient theory 

(MSGT) for ݒ ൌ 0 and ݒ ൌ 0.38. The cross section is the same as [11]: a rectangle with thickness ݄ and 

width ܾ ൌ 2݄ and length ܮ ൌ 20݄. The results are compared with Akgöz, Civalek [11] and show exact 

consistency with MSGT(ݒ ൌ 0). Figure 2 shows that if the Poisson’s ratio is not zero, buckling load 

decreases. By increasing the ratio of length to thickness the size effect decreases and there is no significant 

difference between the two cases. 
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Fig. 2. Critical buckling load Na (ܰߤ) for simply supported beam for various theories (݄ ൌ  (݉ߤ	17.6

For the special case ܮ଴ ൌ ଵܮ ൌ 0, buckling load of modified couple stress theory (MCST) is computed 
while ܮ଴ ൌ ଵܮ ൌ ଶܮ ൌ 0  leads to the classical Euler-Bernoulli buckling load 

                   						 ෩ܰ௖௥ெ஼ ൌ ቀ1 ൅
ఓ

ா
ଶܮ
ଶቁ ሺ݊ߨሻଶ, (66)

                  						 ෩ܰ௖௥஼௟ ൌ
೎ࣨೝ
಴೗௅మ

ாூ
ൌ ሺ݊ߨሻଶ. (67)

Comparing Eqs. (65-68) we conclude that 

                						 ෩ܰ௖௥ெௌ ൐ ෩ܰ௖௥ெ஼ ൐ ෩ܰ௖௥஼௟. (68)

 In the case  ௔ܰ ൌ 0 the critical temperature difference becomes 

                						ሺ ଶܶ െ ଵܶሻ௖௥ெௌ ൌ
ଶ௕బ

మ

ఈ
ሼܭଵሺ݊ߨሻଶ ൅ ሻସሽ (69)ߨଶሺ݊ܭ

2. Buckling of clamped-clamped beam with immovable axial boundaries 

Equations (41) and (42) imply the boundary conditions 

                                                                              						ௗ
యௐ

ௗ௑య
ቚ
௑ୀ଴

ൌ ௗయௐ

ௗ௑య
ቚ
௑ୀଵ

ൌ 0, 
 (70)

                      				 ܹᇱሺ0ሻ ൌ ܹᇱሺ1ሻ ൌ 0. (71)

Applying Eqs. (45), (70), (71) and (58) we get the non-trivial solution as 

                   						ܹ ൌ ሻܺߨଶሺcosሺ2݊ܥ െ 1ሻ, ሺ݊ ൌ 1,2, … ሻ (72)

                                                                               						 ෩ܰ ൌ ሻଶߨଵሺ2݊ܭ ൅ ሻସ (73)ߨଶሺ2݊ܭ

So the critical buckling load of modified strain gradient theory becomes 

             		 			 ෩ܰ௖௥ெௌ ൌ ሺ்ܰ ൅ ௔ܰሻ௖௥ெௌ ൌ ሻଶߨଵሺ2݊ܭ ൅  ሻସߨଶሺ2݊ܭ

                						ൌ ቆ1 ൅ ఓ

௕బ
మா
ቀ2ܮ଴ଶሺ1 െ ሻଶݒ2 ൅ ଶଶܮ ൅
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ଶଶହ
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ா
ቀ2ܮ଴ଶሺ1 െ ሻଶݒ2 ൅ ସ

ହ
ଵଶሺ1ܮ ൅ ሻଶቁݒ ሺ2݊ߨሻସ. 

(74)

For the special case ܮ଴ ൌ ଵܮ ൌ 0 buckling load of modified couple stress theory is computed while 
଴ܮ ൌ ଵܮ ൌ ଶܮ ൌ 0  leads to the classical Euler-Bernoulli buckling load 

                 						 ෩ܰ௖௥ெ஼ ൌ ቀ1 ൅ ఓ

ா
ଶଶቁܮ ሺ2݊ߨሻଶ, (75)
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                                                                                   			 ෩ܰ௖௥஼௟ ൌ
೎ࣨೝ
಴೗௅మ

ாூ
ൌ ሺ2݊ߨሻଶ. (76)

In the case  ௔ܰ ൌ 0 the critical temperature difference becomes 

                  						ሺ ଶܶ െ ଵܶሻ௖௥ெௌ ൌ
ଶ௕బ

మ

ఈ
ሼܭଵሺ2݊ߨሻଶ ൅ ሻସሽ (77)ߨଶሺ2݊ܭ

In the following numerical examples circular cross sections with radius of gyration ݎ are considered. 

Figures 3a and 3b show variation of critical buckling load ௖ࣨ௥  with respect to ܮ ⁄ݎ  based on four different 

approaches (MSGT(ݒ ൌ 0), MSGT(ݒ ൌ 0.38), MCST, CT)  for hinged-hinged and clamped-clamped 

boundary conditions. As the figures indicate, for lower values of ܮ ⁄ݎ  different results are obtained for 

buckling load, while for higher ܮ ⁄ݎ  results for all approaches converge. MSGT predicts the highest critical 

loads when Poisson’s effect is ignored and MSCT shows lower buckling load as compared to MSGT. CT 

results are significantly different as compared to MSGT and MSCT because of the importance of 

additional material length scale parameters. As expected, clamped-clamped boundary conditions predict 

larger values for the buckling load. Figure 4 shows that for large ܮ ⁄ݎ  thermal buckling can occur in a 

range of 100	Ԩ temperature difference, which indicates when ratio of length to radius of gyration is high, 

the microbeam is very sensitive to thermal buckling.  

(a) 

(b) 

Fig. 3. Critical buckling load Na+NT (ܰߤ) for a) hinged-hinged b) clamped-clamped beam  
for various theories (ܮଶ ൌ 17.6 ,݉ߤ ݎ ൌ  (݉ߤ2

0

1

2

3

4

5

6

7

3 5 7 9 11 13 15 17 19

B
u
ck
lin

g 
Lo
ad

 (
N
a+
N
T)

L/r

MSGT v=0

MSGT v=0.38

MCST

CT

0

10

20

30

40

50

60

3 5 7 9 11 13 15 17 19

B
u
ck
lin

g 
Lo
ad

 (
N
a+
N
T)

L/r

MSGT v=0

MSGT v=0.38

MCST

CT



Investigating thermal effects in nonlinear buckling… 
 

October 2014                                                                  IJST, Transactions of Mechanical Engineering, Volume 38, Number M2   

313

 
Fig. 4. Critical Temperature Difference (Ԩ) hinged-hinged(H-H), clamped-clamped(C-C)  

beam by MSGT (ܮଶ ൌ 17.6 ,݉ߤ ݎ ൌ  (݉ߤ2

Figure 5 shows the ratio of buckling load to Euler Buckling load versus small scale parameter using 
various approaches (MSGT(ݒ ൌ 0), MSGT(ݒ ൌ 0.38), MCST) for hinged-hinged and clamped-clamped 
boundary conditions. For MSGT it is assumed that ܮ଴ ൌ ଵܮ ൌ ݒ ଶ. MSGT withܮ ൌ 0 predicts the highest 
buckling load and as the scale parameters increase the discrepancy in the buckling load as predicted by 
various approaches also increases.  

 

 
(a) 

 
(b) 

Fig. 5. Non-dimensional buckling load a) hinged-hinged b)clamped-clamped 
 by various theories (ܮ ൌ 28 ,݉ߤ ݎ ൌ  (݉ߤ2
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b) Movable axial boundary conditions 

In this state the general boundary conditions from Eqs.(40) , (43), (44) become 

																															 ܹሺ0ሻ ൌ ܹሺ1ሻ ൌ 0, (78)

                          ܷሺ0ሻ ൌ 0, (79-a)

                     						ሼ
ଵ

௕బ
మ ቀܷᇱ ൅

ଵ

ଶ
ܹᇱଶ െ ቁܶ∆ߙ െ

௄మ
௕బ

మ ሺܷᇱ ൅
ଵ

ଶ
ܹᇱଶ െ ሻᇱᇱܶ∆ߙ െ ௔ܰ ൅ ௫ܲ௫ሽቚ

௑ୀଵ
ൌ 0, (79-b)

                                 						ቀܷᇱ ൅ ଵ

ଶ
ܹᇱଶ െ ቁܶ∆ߙ

ᇱ
ቚ
௑ୀ଴

ൌ 0, (80-a)

                         ܷᇱሺ1ሻ ൌ 0, (80-b)

According to Eq. (42) 

                     						 ଵ
௕బ

మ ቀܷᇱ ൅ ଵ

ଶ
ܹᇱଶ െ ቁܶ∆ߙ െ ௔ܰ ൌ ଷଵܥ sinh ൬

ଵ

ඥ௄మ
ܺ൰ ൅ ଷଶܥ cosh ൬

ଵ

ඥ௄మ
ܺ൰ ൅ ,ଷଷܥ ሺܭଶ ് 0ሻ (81)

Applying boundary conditions of Eqs. (79-b), (80-a) 

                     					 ଷଵܥ ൌ 0, ଷଷܥ ൌ െ ௫ܲ௫,   (82)

so 

                               ෩ܰ ൌ െ ଵ

௕బ
మ ቀܷᇱ ൅ ଵ

ଶ
ܹᇱଶ െ ቁܶ∆ߙ ൅ ௄మ

௕బ
మ ቀܷᇱ ൅ ଵ

ଶ
ܹᇱଶ െ ቁܶ∆ߙ

ᇱᇱ
൅ 

                                     ௔ܰ ൌ ்ܰ ൅ ௔ܰ ൅ ௫ܰ௫ ൌ ௫ܲ௫, 

(83-a)

where ෩ܰ is independent of ܺ and ௫ܰ௫ is the compression load induced by the presence of axial strain in the 
microbeam. 
If ܭଶ ൌ 0 instead of Eqs.(81-83) we have 

                              				 ෩ܰ ൌ െ
ଵ

௕బ
మ ቀܷᇱ ൅

ଵ

ଶ
ܹᇱଶ െ ቁܶ∆ߙ ൅ ௔ܰ ൌ െܥଷଷ ൌ ௫ܲ௫,    (83-b)

Equations (83) and (50) indicate that the presence of ௫ܰ௫ is the result of small size parameters and 
movable axial boundary condition. If Eq. (83) is substituted in the governing Eq. (38), Eq. (56) results that 
its solution is in the form of Eq. (58). 

1. Buckling of hinged-hinged movable axial boundaries 
Equations (41), (42) imply the same boundary conditions as Eqs. (61), (62). Boundary Eqs. (45), (61), (62) 
give the non-trivial solution as Eq. (63). So the critical buckling load of modified strain gradient theory 
becomes 

                                						 ௖ܰ௥
ெௌ ൌ ሺ்ܰ ൅ ௔ܰ ൅ ௫ܰ௫ሻ௖௥ெௌ ൌ ሺ ௫ܲ௫ሻ௖௥ெௌ ൌ ሻଶߨଵሺ݊ܭ ൅ ሻସߨଶሺ݊ܭ

                                						ൌ ቆ1 ൅
ఓ

௕బ
మா
ቀ2ܮ଴ଶሺ1 െ ሻଶݒ2 ൅ ଶଶܮ ൅

ଵଶ଴

ଶଶହ
ଵଶሺ1ܮ ൅ ሻଶቁቇݒ ሺ݊ߨሻଶ 

                          						൅	
ఓ

ா
ቀ2ܮ଴

ଶሺ1 െ ሻଶݒ2 ൅
ସ

ହ
ଵଶሺ1ܮ ൅ ሻଶቁݒ ሺ݊ߨሻସ, 

(84)

where ݊ denotes the buckling mode. The instability solutions for a hinged-hinged micro beam with 
movable boundary condition is 

                       						ሺ ௫ܰ௫ሻ௖௥ெௌ ൌ ሺ ௫ܲ௫ሻ௖௥ெௌ െ ሺ்ܰ ൅ ௔ܰሻ ൌ ሻଶߨଵሺ݊ܭ ൅ ሻସߨଶሺ݊ܭ െ ሺ்ܰ ൅ ௔ܰሻ

                        						ൌ ቆ1 ൅
ఓ

௕బ
మா
ቀ2ܮ଴

ଶሺ1 െ ሻଶݒ2 ൅ ଶܮ
ଶ ൅

ଵଶ଴

ଶଶହ
ଵଶሺ1ܮ ൅ ሻଶቁቇݒ ሺ݊ߨሻଶ 

(85)



Investigating thermal effects in nonlinear buckling… 
 

October 2014                                                                  IJST, Transactions of Mechanical Engineering, Volume 38, Number M2   

315

                                                        						൅
ఓ

ா
ቀ2ܮ଴ଶሺ1 െ ሻଶݒ2 ൅

ସ

ହ
ଵଶሺ1ܮ ൅ ሻଶቁݒ ሺ݊ߨሻସ െ

ఈ

௕బ
మ

మ்ି భ்

ଶ
െ ௔ܰ. 

Comparing Eq.(65) with (85) we see that ሺ ௫ܰ௫ሻ௖௥ெௌ is zero for immovable boundary condition. When 
଴ܮ ൌ ଵܮ ൌ ଶܮ ൌ 0  and ௔ܰ ൌ 0 the results are the same as for the classical case presented by Yang and 
Lim[13].  

                                        ሺ ௫ܰ௫ሻ௖௥஼௅ ൌ ሺ݊ߨሻଶ െ ఈ

௕బ
మ

మ்ି భ்

ଶ
. (86)

Special case with ܮ଴ ൌ ଵܮ ൌ 0 presents the modified couple stress result 

                                                                    						ሺ ௫ܰ௫ሻ௖௥ெௌ ൌ ቀ1 ൅ ఓ

௕బ
మா
ଶଶቁܮ ሺ݊ߨሻଶ െ

ఈ

௕బ
మ

మ்ି భ்

ଶ
. (87)

Comparing Eqs. (85-87), we conclude 

                                                                             						ሺ ௫ܰ௫ሻ௖௥ெௌ ൐ ሺ ௫ܰ௫ሻ௖௥ெ஼ ൐ ሺ ௫ܰ௫ሻ௖௥஼௅. (88)

 In extreme case ሺ ௫ܰ௫ሻ௖௥ௌீ ൌ 0 the critical temperature difference is obtained 

                                                          	 								ሺ ଶܶ െ ଵܶሻ௖௥ெௌ ൌ
ଶ௕బ

మ

ఈ
ሼܭଵሺ݊ߨሻଶ ൅ ሻସߨଶሺ݊ܭ െ ௔ܰሽ. (89)

Increasing ሺ ଶܶ െ ଵܶሻ decreases the compressive load induced by the presence of axial strain until ሺ ଶܶ െ ଵܶሻ  

reaches ሺ ଶܶ െ ଵܶሻ௖௥ where all compressive strain in the microbeam is due to thermal strain. Investigating 

Eq. (81) shows that ௫ܲ௫ is the buckling load and in contrast to immovable axial boundary conditions 

்ܰ, ௔ܰ would not yield buckling in immovable axial boundary conditions, the induced compressive axial 

load ௫ܰ௫ can be changed. This means that the thermal effect in movable and immovable axial boundary 

conditions are completely different and as discussed, critical temperature difference for the two cases has 

its own meaning. 

2. Buckling of clamped-clamped movable axial boundaries 

Eqs.(41) and (42) imply the boundary conditions as Eqs.(70), (71). Boundary Eqs.(45), (70), (71) lead to  

the non-trivial solution as Eq.(72). So the critical buckling load of modified strain gradient theory 

becomes 

             						 ௖ܰ௥
ெௌ ൌ ሺ்ܰ ൅ ௔ܰ ൅ ௫ܰ௫ሻ௖௥ெௌ ൌ ሺ ௫ܲ௫ሻ௖௥ெௌ ൌ ሻଶߨଵሺ2݊ܭ ൅ ሻସߨଶሺ2݊ܭ

               						ൌ ቆ1 ൅
ఓ

௕బ
మா
ቀ2ܮ଴ଶሺ1 െ ሻଶݒ2 ൅ ଶଶܮ ൅
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ଶଶହ
ଵଶሺ1ܮ ൅ ሻଶቁቇݒ ሺ݊2ߨሻଶ 
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ఓ

ா
ቀ2ܮ଴ଶሺ1 െ ሻଶݒ2 ൅

ସ

ହ
ଵଶሺ1ܮ ൅ ሻଶቁݒ ሺ2݊ߨሻସ, 

(90)

where ݊ denotes the mode of buckling. The instability solutions for a clamped-clamped micro beam with 
movable boundary condition is 
 

                       ሺ ௫ܰ௫ሻ௖௥ெௌ ൌ ሺ ௫ܲ௫ሻ௖௥ெௌ െ ሺ்ܰ ൅ ௔ܰሻ ൌ ሻଶߨଵሺ2݊ܭ ൅ ሻସߨଶሺ2݊ܭ െ ሺ்ܰ ൅ ௔ܰሻ

                     ൌ ቆ1 ൅ ఓ

௕బ
మா
ቀ2ܮ଴

ଶሺ1 െ ሻଶݒ2 ൅ ଶܮ
ଶ ൅ ଵଶ଴

ଶଶହ
ଵଶሺ1ܮ ൅ ሻଶቁቇݒ ሺ2݊ߨሻଶ 

                   ൅
ఓ

ா
ቀ2ܮ଴

ଶሺ1 െ ሻଶݒ2 ൅
ସ

ହ
ଵଶሺ1ܮ ൅ ሻଶቁݒ ሺ2݊ߨሻସ െ

ఈ

௕బ
మ

మ்ି భ்

ଶ
െ ௔ܰ. 

(91)
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Figure 7 indicates that ሺ ௫ܰ௫ሻ௖௥ெௌ ሺ ௫ܰ௫ሻ௖௥஼௅⁄  increases with increasing small scale parameters. It is 

observed that increasing temperature difference decreases the ratio between two critical load computed by 

two theories: ሺ ௫ܰ௫ሻ௖௥ெௌ, ሺ ௫ܰ௫ሻ௖௥஼௅  . 

Studying the effects of geometrical shape plays an important role in investigating the buckling 

behavior of both macro/micro structures [16, 28-31]. Figure 8 shows ratio of the critical temperature 

difference ሺ ଶܶ െ ଵܶሻ௖௥ெௌ ሺ ଶܶ െ ଵܶሻ௖௥஼்⁄  vs. ݎ ⁄ܮ . It is seen that this ratio and stiffness of microbeam increases 

with increasing ݎ ⁄ܮ  and increasing small scale parameters. For small values of ݎ ⁄ܮ  there is no significant 

difference between MSGT, MCST, CT. 

Figure 9 shows the variation of thermal buckling load vs. small scale parameter. It is seen that by 

increasing the small scale parameter the thermal buckling load increases. For higher modes the rate of 

increasing of thermal buckling load with small scale parameter is higher. This was expected because it is 

generally known that the small scale parameter effect is more significant for higher modes. 

 

 
(a) 

 
 

  

(b) 

Fig. 7. Effect of temperature difference on non-dimensional buckling load for various additional material 
                parameters a) hinged-hinged b)clamped-clamped by various theories (ܮ ൌ ,݉ߤ	28 ݎ ൌ  (݉ߤ2
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(a) 

(b) 
Fig. 8. Non-dimensional  critical temperature difference a) hinged-hinged b) 

      clamped-clamped by various theories (ܮ ൌ 28 ,݉ߤ ݎ ൌ  (݉ߤ2

(a) 

(b) 
Fig. 9. Non-dimensional buckling load for a hinged-hinged microbeam with immovable boundary  

conditions for different modes a) MSGT b)MC (ܮ ൌ 28 ,݉ߤ ݎ ൌ  (݉ߤ2

0

50

100

150

200

250

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N
o
n
‐d
im

e
n
si
o
n
al
 c
ri
ti
ca
l 

te
m
p
e
ra
tu
re
 d
if
fe
re
n
ce

r/L

l=0μm

0

50

100

150

200

250

300

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

N
o
n
‐d
im

e
n
si
o
n
al
 c
ri
ti
ca
l 

te
m
p
e
ra
tu
re
 d
if
fe
re
n
ce

r/L

l=0μm

l=5μm

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10

N
o
n
‐d
im

e
n
si
o
n
al
 B
u
ck
lin

g 
Lo
ad

L2

n=1

n=2

n=3

n=4

n=5

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10

N
o
n
‐d
im

e
n
si
o
n
al
 B
u
ck
lin

g 
Lo
ad

L2

n=1
n=2
n=3
n=4
n=5



Investigating thermal effects in nonlinear buckling… 
 

October 2014                                                                  IJST, Transactions of Mechanical Engineering, Volume 38, Number M2   

319

5. CONCLUSION 
 
This paper presented a new model for Euler-Bernoulli microbeam based on higher-order strain gradients 

for thermal buckling of microbeam, associated with small scale parameters. The results showed that the 

critical buckling load significantly increases as a result of considering the small scale parameters. This 

demonstrates that microbeam stiffness is larger due to small size effect. Poisson’s effect seriously  

decreases the critical buckling load on the basis of modified strain gradient theory and must be considered, 

although it does not affect uniaxial critical buckling load on the basis of modified couple stress theory and 

classical theory. In the case of immovable axial boundary conditions, thermal loading could lead to 

buckling, while for the movable axial boundary conditions thermal loading cannot lead to buckling of 

microbeam but changes the compressive load induced in the microbeam. A higher critical temperature 

difference is observed for larger ratios of the radius of generation to length. Buckling load of microbeam 

decreases with increasing temperature difference. 
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