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Abstract– In the present study, some modifications on the firefly algorithm are presented to 
improve its performance. The firefly algorithm is a recently developed robust metaheuristic 
optimization technique which mimics the social behavior of fireflies based on their flashing 
characteristics. To improve its performance three basic modifications are proposed in the present 
work. These modifications consist of adding memory, adding newborn fireflies and proposing a 
new updating formula. To evaluate the applicability of the proposed method, three classical 
engineering design optimization problems and three sizing optimization of truss structures are 
solved and results are compared with those available in the literature. It is observed that the 
proposed method can effectively be used in solution of engineering design optimization problems.           
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1. INTRODUCTION 
 

Optimization appears in many real world problems, e.g. engineering, agricultural, and manufacturing, 
economics, management, medicine, etc. There are also other problems which are not optimized inherently, 
but can be reformulated as an optimization problem; e.g. inverse problems [1]. Therefore, different 
techniques are being extensively used for solution of such problems in various spheres of human activities. 
The unified approach is to represent the problem with a mathematical model at first and then invoke an 
appropriate optimization method to solve the problem and obtain the unknowns in such a way that satisfies 
all of our desires. As there are many inherently different optimization problems, there is no single 
optimization method that can be used in all of the problems. Therefore many different methods with 
special capabilities are developed to handle different problems. 

In the case of engineering design, most of the optimization problems are highly nonlinear including 
many design variables and complicated constraints. In addition, not all design variables are continuous and 
some variables can only take certain discrete values. As a result, the optimization problem often has a 
complex feasible domain with multiple local optima which requires problem specific techniques and there 
is no guarantee the global optima will be found. 

Significant amount of work has been done in developing efficient methods for solving optimization 
problems. Many classical optimization algorithms use the gradient information and normally work well 
for smooth problems; however, if there is some discontinuity in the objective function, constraints or 
design variables they may not work. In addition, these classical methods may converge to local optimum 
points. Thus, to overcome these difficulties, the gradient free algorithms are preferred. 

One class of derivative free techniques consists of evolutionary or nature inspired metaheuristic 
optimization algorithms. The vast majority of these algorithms have been derived from the behavior of 
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biological or physical systems in nature, for example, biological evolution, stellar evolution, thermal 
annealing, animal behavior, music improvisation, etc. [2]. Two important characteristics of metaheuristic 
optimization methods are intensification and diversification [3]. Searching the current solutions to find the 
local optimums and selecting the best candidate designs is known as intensification. Diversification, on the 
other hand, means that optimization algorithm explores the entire search space for global optima. These 
techniques have gained a lot of popularity in recent years because of their ability to deal with complex 
optimization problems which are otherwise difficult to solve. 

Various bio inspired optimization algorithms have been presented in literature. The most popular 
methods are genetic algorithm [4], evolutionary strategies [5], evolutionary programming [6], particle 
swarm optimization [7], differential evolution [8], ant colony optimization [9], honey bee algorithm [10], 
bee algorithm [11], artificial bee colony [12], cuckoo search [13], hunting search [14], bat algorithm [15] 
and firefly algorithm [3]. Besides bio inspired algorithms, there are the nature inspired algorithms that 
mimic physical phenomena such as simulated annealing [16], harmony search [17], big bang-big crunch 
[18], charged system search [19], spiral optimization [20], biogeography based optimization [21], krill 
herd algorithm [22], teaching learning algorithm [23] and ray optimization [24]. 

Firefly algorithm is a recently developed, promising, metaheuristic optimization technique originally 
proposed by Yang [3]. The FA is based on the idealized behavior of the flashing characteristics of fireflies. 
Based on Yang’s works, the FA is very efficient at finding the global optima with high success rates [3]. It 
is also shown, using various test functions, that the FA is superior to both PSO and GA in terms of both 
efficiency and success rate [3, 25, 26]. 

One of the most important things in developing or selecting a proper optimization algorithm 
(especially in metaheuristic optimization algorithms) is the number of function evaluations required to 
obtain the solution. Because, in a majority of the real world engineering design optimization problems, 
evaluation of objective function and constraints involve intensive numerical computations and the function 
evaluations may be so costly. Therefore, accurate tuning or modifying of the optimizer to reduce the 
number of evaluations is very crucial. To tackle this goal, in the present work, some basic modifications 
are introduced in the original FA. 

After the first presentation of FA in [27] some modifications are proposed by different researchers; 
for further details refer to [28-32]. To continue this way, in the present work, three new notions are 
inserted in the basics of the FA to improve its performance. They are: i) adding a kind of memory to 
transfer some information obtained in each iteration to the next one, ii) adding newborn fireflies to 
extensively explore the search space for global optimum point and iii) introducing a new updating formula 
to reduce wandering motion of fireflies. To evaluate the applicability of proposed modifications, six 
numerical examples consist of three benchmark problems in engineering design optimization problems as 
well as three cross sectional area optimization of plane and space truss structures are solved and the results 
are compared with those available in the literature for different optimization algorithms. The results show 
that the proposed modifications can be effectively used in solution of engineering design optimization 
problems. 

The remaining part of this article deals at first with a brief review of the basics of the FA and is 
followed by a detailed description of the proposed method. After a short note on the constraint handling 
approach, the benchmark problems are solved and the results are presented. Finally the article ends with 
conclusions and references. 

 
2. FIREFLY ALGORITHM 

 
FA is a new population based metaheuristic optimization algorithm which is inspired by the flashing 
behavior of fireflies. There are three idealized rules in the traditional FA [3]: (a) all fireflies are unisex so 
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that one firefly will be attracted to other fireflies regardless of their sex; (b) attractiveness is proportional to 
their brightness, thus for any two flashing fireflies, the less brighter one will move towards the brighter 
one. If there is no brighter one than a particular firefly, it will move randomly; and (c) the brightness of a 
firefly is determined by the landscape of the objective function. 

In other words, in the FA each firefly will be attracted to the brighter fireflies, and at the same time 
they will move randomly [3]. The attractiveness is proportional to the brightness of the flashing light 
which will decrease with distance. Therefore, the attractiveness will be evaluated in the eye of the other 
fireflies and the light absorption characteristic of the surrounding will cause reduction of light intensity 
and the attractiveness of the fireflies. The attractiveness   can be defined as follows. 

2

0
re                                                                            (1) 

The light absorption coefficient   can be considered as a constant representing a characteristic length 
scale of the problem. Initial light intensity 0  is the attractiveness at 0r . The Cartesian norm 

jir xx   represents the distance between any two fireflies i and j. The updating formula for 
relocating any firefly i which is attracted by a brighter firefly j is as follows. 

εxxx   )( iji                                                                      (2) 

where the first term is due to the attraction, whereas the second term is random walk.   is the 
randomization parameter and ε  is a random vector within the search space and can be defined as follows. 

))(5.0( LUε                                                                       (3) 

where   is a random number between 0 and 1; U  and L  are the side constraints which determine the 
upper and lower bounds of the design variables, respectively. Based on this, the basic steps of the FA can 
be summarized as a pseudo code shown in Fig. 1 [3]. It must be noted that the original FA pseudo code 
which has been published in [27] has some ambiguities which are corrected in the present form in Fig. 1. 
 

Define the upper bound U and lower bound L for the design variables 
Generate an initial population of fireflies xi (i=1 to n) 
Evaluate the response function Fi for each firefly xi 
Sort the fireflies based on their response function 
for t=1 to Maximum iteration 
  yi=xi (i=1 to n) 
  for i=1 to n 
   for j=1 to n 
    if Fi>=Fj 
     r=norm(xi-xj) 
     )exp( 2

0 r   

     )()5.0( LUε  rand  

     εxyxx   )( ijii  

    end if 
   next j 
   Check the side constraints for firefly xi 
  next i 
  Evaluate the response function Fi for each firefly xi 
  Sort ascending fireflies based on their response function 
  Present the first firefly as the best solution obtained in this iteration 
next t 

 
Fig. 1. Pseudo code of the original firefly algorithm 
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FA may share many similarities with PSO. In fact, it has been proved in [3] that when  , the 
FA will become an accelerated version of PSO, while in 0 , the FA reduces to a version of random 
search algorithms. 

 
3. MODIFIED FIREFLY ALGORITHM 

 
In the current article, three basic modifications are introduced in the original FA to improve its 
performance. These points are explained in detail in the following subsections. 

a) Memory 

In many metaheuristic optimization algorithms there exists a kind of memory which transfers some 
information from one iteration to the other. For example, in the PSO a memory is defined to retain the best 
particle and also the global best positions. This information is then used in the next iteration for updating 
the particles. As another example, in the genetic algorithm the offspring inherit the genes from its parents 
and then transfer them to the next generation via crossover operator. Unfortunately, the traditional FA 
suffers from lack of memory and no specific information is transferred from one iteration to the other. 

To further explain, consider a firefly which reaches to an optimum or near optimum point in one 
iteration. This firefly will participate in the updating process to generate the next population. It will attract 
other fireflies but it has no more chance to do this in successive iterations because the position of this 
firefly will also be changed and its information lost. To overcome this point, it is necessary to allow some 
information of high rank fireflies to be transferred to the next iteration. In the current work, two 
approaches are proposed for this purpose and are described as follows. 

In the first approach, in each iteration a number of the high rank fireflies (say 1m ) are directly 
transferred to the next iteration without any change in their position. To do this practically, in each 
iteration the updating operator is not applied on the first 1m  high rank fireflies and therefore the rest of 
them ( 1mn   fireflies) participate in the updating process. 

In the second approach, in each iteration, a number of low rank fireflies (say 2m ) are removed from 
the population and replaced by equal numbers of high rank fireflies from the previous iteration. To do this, 
in each iteration, a copy of 2m  high rank fireflies is stored and in the next iteration the updating operator 
applies only to the first 2mn   fireflies and the 2m  low rank fireflies are replaced with the 2m  high rank 
fireflies stored in the previous iteration. 

The first approach tends to fix the high rank fireflies and other fireflies explore the search space 
extensively for the global optimum point. On the other hand, in the second approach some of the low rank 
fireflies are removed and fewer fireflies are allowed to explore the search space for global optimum. 
Therefore, the second approach converges rapidly to one optimum point and begins to search intensively 
near the optimum points. Although the second approach converges rapidly and gives accurate results, it 
may be trapped in a local minimum point. It is also worth noting that there is no need to evaluate the 
objective function of the stored fireflies in both of these approaches. It is also clear that only one of these 
approaches must be chosen and using both of them simultaneously is not effective. 

b) Newborn fireflies 

Mutation operator is one of the appealing features of the genetic algorithm. It prevents the genetic 
algorithm from being trapped in a local optimum and plays the role of recovering the lost genetic 
materials. If crossover operator in the genetic algorithm is supposed to exploit the current solution to find 
better ones (intensification), mutation is supposed to help exploration of the whole search space 
(diversification). Therefore, the mutation operator maintains genetic diversity in the population and helps 
escape from local minimum trap. 
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Unfortunately, no such mechanism was designed in the original FA. As the second modification, a 
similar notion is introduced in the FA via adding newborn fireflies into the population. To tackle this, in 
each iteration, some new fireflies (say k) are generated randomly within the search space and inserted into 
the population. To maintain the total number of fireflies constant, it is necessary to remove k fireflies from 
the population, and this is done by removing the low ranked ones. 

c) Updating formula 

The updating formula of the original FA presented in Eq. (2) changes the position of each firefly 
towards all of the brighter fireflies in a stepwise manner regardless of the objective function of this firefly 
in these steps. To explain this, refer to Fig. 2 which schematically represents the updating path of a firefly 
in a two dimensional search space with 11 fireflies. In this figure, as in the original FA, the fireflies are 
sorted according to their objective functions. For example, the fireflies 1 to 5 are brighter that the firefly 6. 
As it is shown, using Eq. (2), the firefly 6 changes its position repetitively toward the fireflies 1 to 5 and 
eventually reaches its final position. It is worth noting that the objective function is not reevaluated in each 
step where the position of this firefly changes. Therefore, relocation of this firefly is based on its objective 
at its initial position. As it is shown schematically in Fig. 2, it seems that this firefly is wandering and 
follows a zigzag updating path. This behavior of the original FA decreases overall performance of the 
algorithm. 

  
Fig. 2. Schematic representation of updating path of one firefly in the original FA. The triangle shows  

position of a firefly whose updating path is drawn. The solid circles are brighter  
fireflies and the hollow circles are the rest of them 

 
To overcome this point, a simple updating formula is proposed to remove the wandering motion of 

the fireflies. In this approach, instead of moving each firefly toward the brighter ones in a stepwise 
manner, a representative point which shows the overall distribution of the brighter fireflies is defined at 
first and then the firefly moves toward this point in only one step. In other words, the updating formula for 
any firefly i which is attracted by a set of brighter fireflies is proposed as follows. 

εxpx   )( iii                                                               (4) 

where ip  is the representative point that shows the overall distribution of the brighter fireflies. Various 
ideas can be invoked to define this representative point ip . The simplest one which is used here is to 
define the coordinates of the point ip  as the average of the coordinates of the brighter fireflies as follows. 







1

11

1 i

l
li i

xp                                                                    (5) 
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A schematic representation of the above updating formula is shown in Fig. 3. 

  
Fig. 3. Schematic representation of updating path based on the proposed updating formula. The triangle is the  

firefly whose updating path is drawn. The solid circles are brighter fireflies and the hollow  
circles are the rest of them. The square is the representative point of brighter fireflies 

Based on the modifications described in the foregoing sections, a pseudo code is prepared and is 
shown in Fig. 4. Both of the memory approaches are considered in this pseudo code. The memory 
parameters 1m  and 2m  must be chosen in such a way that only one approach becomes active. 
 

Define the upper bound U and lower bound L for the design variables 
Generate an initial population of fireflies xi (i=1 to n) 
Evaluate the response function Fi for each firefly xi 
Sort the fireflies based on their response function 
for t=1 to Maximum iteration 
  yi=xi (i=1 to n) 
  for i=m1 to n-m2-k 
   p=average of coordinates of fireflies that are brighter than xi 
   r=norm(xi-p) 
   )exp( 2

0 r   

   )()5.0( LUε  rand  

   εxPxx   )( iii  

  next i 
  Check the side constraints for firefly xi 
  for i=n-m2-k+1 to n-k 
   xi=yi-n+m2+k 
  next i 
  for i=n-k+1 to n 
   xi=L+rand×(U-L) 
  next i 
  Evaluate the response function Fi only for the updated fireflies 
  Sort the fireflies based on their response function 
  Present the first firefly as the best solution obtained in this iteration 
next t 

 
Fig. 4. Pseudo code of the proposed modified firefly algorithm 

 
4. CONSTRAINT HANDLING APPROACH 

 
The most common approach in the metaheuristic optimization community to handle constraints is to use 
the penalty method. The basic idea of this method is to transform a constrained optimization problem into 
an unconstrained one by adding a certain value to the objective function based on the amount of constraint 
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violation occurred in a certain solution. Such technique, which is known as the exterior penalty method, is 
one of the most popular methods of constraint handling in the evolutionary algorithms. A similar method 
is also used in the present work. 

If the optimization problem consists of minimization of cost function f  subjected to the inequality 
constraints )to1(,0 pigi   and equality constraints )to1(,0 qihi  , then in the penalty function 
approach, the constraints can be collapsed with the cost function into a response functional F  defined as 
follows: 




 
q

i
ii

p

i
ii hgfF

1

2

1

2)(                                                       (6) 

)0,max( ii gg                                                                (7) 

where 0i  and 0i  are the penalty coefficients. The penalty coefficients should be large enough 
to obtain a feasible solution and may depend on the specific optimization problem. By doing this, the 
constrained optimization problem is transformed into an unconstrained optimization problem which is 
simpler to solve. 
 

5. EVALUATING EXAMPLES 
 
Most real world engineering optimization problems are nonlinear with complex objective and constraints 
functions. Evaluation of these functions is also time consuming and expensive. Therefore, a good 
algorithm, from this point of view, is one which captures the optimum point with a minimum number of 
function evaluations. Standard test problems are useful for the purpose of evaluating optimization 
algorithms. Six benchmark numerical examples considered in this section have been widely used for this 
purpose. In all cases, the second approach for the memory is used and the statistical measures have been 
obtained and reported based on 50 independent runs. 

a) Welded beam design problem 

In the first example, a horizontal beam which is to be welded to a vertical rigid column must be 
designed for minimum cost to support a tip load [33] (Fig. 5). The beam is made of C-1010 carbon steel 
and is under vertical load kips6P . The thickness of the weld (h), the length of the welded joint (l), the 
width of the beam (t) and the thickness of the beam (b) were considered as design variables. The length L 
is assumed to be specified at 14 in. The optimization problem consists of selecting the design variables in 
such a manner to minimize the fabrication cost subject to constraints on shear stress in weld (τ), bending 
stress in the beam (σ), critical buckling load (Pc), tip deflection of the beam (δ) and also side constraints.  

 
Fig. 5. Welded beam design problem 
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The objective function is as follows. 

)14(04811.010471.1),,,( 2 ltblhbtlhf                                        (8) 

which is subjected to the following constraints. 
01  allg                                                                  (9) 

02  allg                                                              (10) 

03  bhg                                                                  (11) 

04  cPPg                                                               (12) 

05  allg                                                               (13) 

The allowable shear stress, normal stress and tip deflection are ksi6.13all , ksi30all  and 
in25.0all  respectively. The resultant of primary and secondary shear stresses in the weld is as 

follows. 

)4/)(12/(2

4/))(()2/14(6000
,

2

6000

,4/))((

22

22

2222

thlhl

thll

hl

thll











                                (14) 

The maximum bending stress in the root of the beam is as follows. 

)/(504000 2bt                                                            (15) 
The critical buckling load is as follows. 

3)0282346.01(64746 tbtPc                                            (16) 

The maximum tip deflection is as follows. 

)(1952.2 3bt                                                          (17) 

The side constraints are: 

,51.0,50065.0,101.0,5125.0  btlh                   (18) 

The problem is solved using proposed method with n=20, 01 m , 22 m  and k=1. The proposed 
algorithm found the optimum solution requiring 1500 iterations per optimization run. The statistical results 
are obtained in the present work for 50 independent runs and are presented in Table 1. The convergence 
history plot for the best and average runs are also shown in Fig. 6. Table 2 compares the optimization 
results found in the present work with similar data reported in literature. As it can be seen the proposed 
method requires 27000 function evaluations to complete the optimization process. 

Table 1. Statistical results for 50 independent runs for the welded beam design problem 

Best 2.3822 
Mean 2.5356 
Worst 5.4268 
Standard deviation 0.1051 
No. fireflies 20 
No. memories, m2 2 
No. newborn fireflies, k 1 
No. iterations 1500 
No. Function evaluations 27000 
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Fig. 6. Convergence history for the welded beam design problem 

 
Table 2. Optimization results presented in different sources for welded beam design problem 

Reference h l t b Cost 
no. of 

func. eval. 
Siddall 1972 [33] 0.2444 6.2819 8.2915 0.2444 2.3815 N.A. 
Ragsdell and Phillips 1976 [34] 0.2444 6.2186 8.2915 0.2444 2.3811 N.A. 
Deb 1991 [35] 0.2489 6.1730 8.1789 0.2533 2.4331 320080 
Leite and Topping 1998 [36] 0.2489 6.1097 8.2484 0.2485 2.4000 6273 
Atiqullah and Rao 2000 [37] 0.2471 6.1451 8.2721 0.2495 2.4148 N.A. 
Deb 2000 [38] N.A. N.A. N.A. N.A. 2.3819 40080 
Akhtar et al. 2002 [39] 0.2407 6.4851 8.2399 0.2497 2.4426 19259 
Ray and Liew 2003 [40] 0.2444 6.2380 8.2886 0.2446 2.3854 33095 
He et al. 2004 [41] 0.2444 6.2175 8.2915 0.2444 2.3810 30000 
Lemonge and Barbosa 2004 [42] 0.2443 6.2117 8.3015 0.2443 2.3816 320000 
Lee and Geem 2005 [43] 0.2442 6.2231 8.2915 0.2443 2.3810 110000 
Liu 2005 [44] 0.2444 6.2175 8.2915 0.2444 2.3810 N.A. 
Hedar and Fukushima 2006 [45] 0.2444 6.2158 8.2939 0.2444 2.3811 56243 
Zhang et al. 2008 [46] 0.2444 6.2175 8.2915 0.2444 2.3810 24000 
Zhang et al. 2009 [47] 0.2443 6.2201 8.2940 0.2444 2.3816 28897 
Aragon et al. 2010 [48] 0.2444 6.2186 8.2915 0.2444 2.3811 320000 
Present study 0.2443 6.2251 8.2916 0.2444 2.3822 27000 

b) Pressure vessel design problem 

A cylindrical pressure vessel capped at both ends by hemispherical heads must be designed for 
minimum cost to endure an internal pressure [49] (Fig. 7). The vessel must be designed according to the 
ASME code on boilers and pressure vessels. The internal working pressure is 3 ksi and minimum volume 
requirement is 750 ft3. The total cost results from a combination of welding, material and forming costs. 
The thickness of the cylindrical shell ( sT ), the thickness of the spherical head ( hT ), the inner radius ( R ) 
and the length of the cylindrical segment of the vessel ( L ) were considered as the design variables. The 
objective function can be stated as follows. 

RTLTRTRLTLRTTf hshshs
222 84.191661.37781.16224.0),,,(                  (19) 

In accordance with the ASME design codes, the constraints are stated as follows. 

0193.01  RTg s                                                             (20) 

000954.02  RTg h                                                        (21) 
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01728750
3

4 32
3  RLRg                                             (22) 

The side constraints are: 

24010,20010,1875.60625.0,1875.60625.0  LRTT hs           (23) 

 
Fig. 7. Pressure vessel design problem 

The proposed method is used with n=20, 01 m , 22 m  and k=1 and the optimization results are 
presented in Table 3 after 1500 iterations. The results are compared with other results given in the 
literature in Table 4. As it can be seen, the total number of function evaluations is 27000 per each 
independent run. 

Table 3. Statistical results for 50 independent runs for the pressure vessel design problem 

Best 6048.5142 
Mean 7255.0734 
Worst 9010.8501 
Standard deviation 393.6952 
No. fireflies 20 
No. memories, m2 2
No. newborn fireflies, k 1 
No. iterations 1500 
No. Function evaluations 27000 

 
Table 4. Optimization results presented in different sources for pressure vessel design problem 

Reference Ts Th R L Cost 
No. of 

func. eval. 
Sandgren 1990 [49] 1.1250 0.6250 48.9700 106.7200 7982.5000 N.A. 
Zhang and Wang 1993 [50] 1.1250 0.6250 58.2900 43.6930 7197.7000 N.A. 
Deb 1997 [51] 0.9375 0.5000 48.3290 112.6790 6410.3811 N.A. 
Coello 2000 [52] 0.8125 0.4375 40.3239 200.0000 6288.7445 N.A. 
Coello and Montes 2002 [53] 0.8125 0.4375 42.0974 176.6540 6059.9463 80000 
Hedar and Fukushima 2006 [45] 0.7683 0.3797 39.8096 207.2256 5868.7648 108883 
Mahdavi et al. 2007 [54] 0.7500 0.3750 38.8601 221.3655 5849.7617 N.A. 
Dimopoulos 2007 [55] 0.7500 0.3750 38.8601 221.3655 5850.3831 100000 
Cagnina et al. 2008 [56] 0.8125 0.4375 42.0984 176.6366 6059.7143 24000 
Shen et al. 2009 [57] 0.8125 0.4375 42.0984 176.6366 6059.7140 26000 
Aragon et al. 2010 [48] 0.8125 0.4375 42.0984 190.7877 6390.5540 80000 
Coelho 2010 [58] 0.8125 0.4375 42.0984 176.6372 6059.7208 8000 
Gandomi et al. 2011 [59] 0.7500 0.3750 38.8601 221.3655 5850.3831 25000 
Gandomi et al. 2012 [60] 0.8125 0.4375 42.0984 176.6366 6059.7100 15000 
Ali 2012 [61] 0.7782 0.3846 40.3197 200.0000 5885.3300 31915 
Present study 0.7902 0.3828 39.9187 206.8192 6048.5142 27000 

c) Tension-compression spring design problem 

The helical tension-compression spring shown in Fig. 8 is subject to an axial load. The spring must be 
designed for minimum weight [62].The wire diameter (d), mean coil diameter (D) and the number of 
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active coils (N) were included as optimization variables. The objective function can be expressed as 
follows. 

)2(),,( 2  NDdNDdf                                                             (24) 

 
Fig. 8. Tension-compression spring design problem 

The following four normalized constraints specify the design limitations: 

The minimum deflection of the spring caused by the axial loading should be greater than a specified 

value. 

0)71875/(1 43
1  dNDg                                                      (25) 

The maximum shear stress in the wire should be smaller than the allowable shear stress of the 
material. 

  01)12566/(46.2)(12566)4( 23
2  ddDddDDg                       (26) 

The surge frequency should be greater than a specified value. 

0)/(54.1401 2
3  NDdg                                                    (27) 

Finally, a limit exists on the outside diameter of the spring 

015.1/)(4  dDg                                                          (28) 

The side constraints are: 

152,3.125.0,2.005.0  NDd                                (29) 

The optimization results obtained by the present method are given in Table 5. With n=15, 01 m , 

22 m  and k=1 the optimization process was completed within 1000 iterations and 13000 function 
evaluations. Table 6 compares the optimization results found in the current work with similar data 
reported in literature. 

Table 5. Statistical results for 50 independent runs for the spring design problem 

Best 0.01269 

Mean 0.01513 

Worst 0.02320 

Standard deviation 0.00147 

No. fireflies 15 

No. memories, m2 2 

No. newborn fireflies, k 1 

No. iterations 1000 

No. Function evaluations 13000 
 



M. J. Kazemzadeh Parsi 
 

IJST, Transactions of Mechanical Engineering, Volume 38, Number M2                                                                  October 2014 

414

Table 6. Optimization results presented in different sources for spring design problem 

Reference d D N Cost 
no. of 

func. eval. 
Arora 1989 [62] 0.05340 0.39918 9.18540 0.01273 N.A. 
Coello 2000 [52] 0.05148 0.35166 11.63220 0.01270 N.A. 
Ray and Saini 2001 [63] 0.05042 0.32153 13.97990 0.01306 1291 
Ray and Liew 2003 [40] 0.05216 0.36816 10.64840 0.01267 30000 
He et al. 2004 [41] 0.05169 0.35675 11.28710 0.01267 15000 
Coello and Becerra 2004 [64] 0.05000 0.31740 14.03180 0.01272 50000 
Parsopoulos and Vrahatis 2005 [65] N.A. N.A. N.A. 0.01312 100000 
Hedar and Fukushima 2006 [45] 0.05174 0.35800 11.21390 0.01267 49531 
Huang et al. 2007 [66] 0.05161 0.35471 11.41080 0.01267 204800 
He and Wang 2007 [67] 0.05173 0.35764 11.24450 0.01267 200000 
Hsu and Liu 2007 [68] 0.05236 0.37315 10.36490 0.01265 N.A. 
Zhang et al. 2008 [46] 0.05169 0.35672 11.28900 0.01267 24000 
Cagnina et al. 2008 [56] 0.05158 0.35419 11.43868 0.01267 24000 
Shen et al. 2009 [57] 0.05169 0.35677 11.28617 0.01267 8000 
Aragon et al. 2010 [48] 0.05162 0.35511 11.38450 0.01267 36000 
Coelho 2010 [58] 0.05151 0.35253 11.53890 0.01267 2000 
Gandomi et al. 2012 [60] 0.05169 0.35673 11.28850 0.01267 5000 
Ali 2012 [61] 0.05184 0.36030 11.08220 0.01267 4945 
Present study 0.05173 0.35770 11.25950 0.01269 13000 

d) Ten bar plane truss 

Figure 9 shows dimensions, loadings and supports of a ten bar plane truss structure. This structure is 
a standard example used by many authors to evaluate optimization algorithms. In this example, two 
concentrated vertical force of P=100 kips are applied on nodes 2 and 4 (Fig. 9) and all members are 
assumed to be made from a material with Young’s modulus of E=10000 ksi and mass density of ρ=0.10 
lb/in3. The objective function is considered as total weight of the structure and cross sectional areas of all 
members are considered as the design variables. The minimum and maximum cross sectional areas of 
members are set to Amin=0.1 in2 and Amax=35.0 in2. The maximum allowable displacement of free nodes in 
each direction and maximum allowable stress in the members are considered to be less than δall=2 in and 
σall=25 ksi, respectively. In summary, in this example, there are 10 design variables and 36 nonlinear 
constraints (10 tension constraints, 10 compression constraints and 16 displacement constraints). 

 
Fig. 9. Ten bar plane truss structure 

In this example, and also in the following two ones, we don’t have closed form representation of the 
constraints. Therefore, the finite element method is used here to evaluate the nodal displacements and 
elemental stress of the structure. Basic procedures and formulation of the finite element solution of truss 
structures can be found in any textbook such as [69]. 
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The sizing optimization problem of this truss is solved using the proposed method with n=25, 

01 m , 22 m  and k=1. After 2500 iterations, in each independent run the proposed algorithm found 

the optimum solution. The results obtained in the present work as well other results which appeare in the 

literature are presented in Table 7. 

Table 7. Optimal cross sectional areas (in2) for ten bar plane truss problem 

Element 
numbers 

Hatay and Toklu 
2002 [71] 

Li et al. 2007 
[72] 

Sonmez 2011 
[73] 

Present 
study 

1 30.680 30.704 30.548 29.808 
2 0.100 0.100 0.100 0.100 
3 23.500 23.167 23.180 23.080 
4 14.970 15.183 15.218 15.288 
5 0.100 0.100 0.100 0.100 
6 0.550 0.551 0.551 0.578 
7 7.450 7.460 7.463 7.467 
8 21.020 20.978 21.058 21.296 
9 21.430 21.508 21.501 21.800 

10 0.100 0.100 0.100 0.100 
Weight (lb) 5061.600 5060.92 5060.880 5060.890 

e) Eighteen bar plane truss 

Figure 10 shows the geometry and loading condition of the cantilever truss structure consisting of 

eighteen members. The structure is subjected to a series of concentrated point forces of P=20 kips acting 

on the upper cord nodes of the truss as shown in Fig. 10. All members are made from material with an 

elastic modulus of E=10000 ksi and a mass density of ρ=0.10 lb/in3. The stress constraint is defined as 

σall=20 ksi for both the tension and compression members. In addition, the linear (Euler) buckling 

constraint is also taken into account for compression members. The critical buckling stress for the i th 

member is obtained as: 

)/( 2
iii LKEA                                                                  (30) 

where Li is length of the member, Ai is cross sectional area of the member and K is a constant determined 

from geometry and was taken to be 4. The number of independent size variables was reduced to four 

groups as presented in Table 8. The minimum cross sectional area of the members is Amin=0.10 in2 and the 

maximum cross section is set to Amax=50 in2. There are 36 nonlinear constraints on the member stress and 

buckling stress with no displacement constraints. 

 
 

Fig. 10. Eighteen bar plane truss structure 
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Table 8. Optimal cross sectional areas (in2) for eighteen bar plane truss problem 

Element numbers 
Imai and Schmit 

1991 [74]
Lee and Geem 

2004 [75]
Sonmez 2011 

[73]
Present 
study 

1, 4, 8, 12, 16 9.998 9.980 10.000 10.000 
2, 6, 10, 14, 18 21.650 21.630 21.651 21.650 

3, 7, 11, 15 12.500 12.490 12.500 12.500 
5, 9, 13, 17 7.072 7.057 7.071 7.071 
Weight (lb) 6430.000 6421.880 6430.529 6430.433 

Displacements and stresses are obtained using the finite element method. The sizing optimization 
problem of this truss is solved using the proposed method with n=25, 01 m , 22 m  and k=1. After 
2500 iterations, the results are presented in Table 8. In addition, this table contains the results for the same 
optimization task from different research efforts. 

f) Twenty five bar space truss 

As the last numerical example, a spatial truss structure that has been solved by many researchers as a 
benchmark structural problem is selected [70]. In this example, the weight minimization of a 25 bar 
transmission tower structure under two different loading cases is considered. Its topology and node 
numbers are shown in Fig. 11. The design variables are the cross sectional area of the truss members 
which are categorized in eight groups A to H as shown in Fig. 11. The structure is subjected to two 
loading conditions as presented in Table 9. The design constraints are the maximum displacement 
limitations of δall=0.35 in on every node in every direction and the axial stresses which are shown in Table 
10 for each group of the truss members. The range of cross sectional area of the truss members is selected 
from Amin=0.10 in2 to Amax=3.4 in2. The material density is considered as ρ=0.10 lb/in3 and the modulus of 
elasticity is taken as E=10000 ksi. 

 
Fig. 11. Twenty five bar space truss structure 

Table 9. Loading cases for 25 bar space truss problem 

Load case Node Px (lb) Py (lb) Pz (lb) 

1 
1 1.0 10.0 -5.0 
2 0.0 10.0 -5.0 
3 5.0 0.0 0.0 

2 
5 0.0 20.0 -5.0
6 0.0 -20.0 -5.0
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Table 10. Stress limitations for each element group for 25 bar space truss problem 

Element 
group 

Tensile stress 
limitations (ksi) 

Compressive stress 
limitations (ksi) 

A 40.0 35.092 
B 40.0 11.590 
C 40.0 17.305 
D 40.0 35.092 
E 40.0 35.092
F 40.0 6.759 
G 40.0 6.959 
H 40.0 11.082 

Similar to previous truss examples, the finite element method is used to determine the stresses and 
displacements. The weight optimization problem of this space truss is also solved using the proposed 
method with n=25, 01 m , 22 m  and k=1. After 3000 iterations, the results are presented in Table 11. 
This table also illustrates the optimum results reported in the literature. 

Table 11. Optimal cross sectional areas (in2) for 25 bar space truss problem 

Element group 
Haftka and 

Gürdal 1992 
[76] 

Lee and Geem 
2004 [75] 

Li et al. 2007 
[72] 

Lamberti 
2008 [77] 

Sonmez 2011 
[73] 

Present 
study 

A 0.010 0.047 0.010 0.010 0.011 0.010 
B 1.987 2.022 1.970 1.987 1.979 1.997 
C 2.991 2.950 3.016 2.994 3.003 3.011 
D 0.010 0.010 0.010 0.010 0.010 0.010 
E 0.012 0.014 0.010 0.010 0.010 0.010 
F 0.683 0.688 0.694 0.694 0.690 0.687 
G 1.679 1.657 1.681 1.681 1.679 1.644 
H 2.664 2.663 2.643 2.643 2.652 2.678 

Weight (lb) 545.220 544.380 545.190 545.161 545.193 545.114 
 

6. CONCLUSION 
 
In the present article, three basic modifications were proposed to improve performance of the firefly 
optimization algorithm. They were: adding memory, adding mutation and defining a new updating 
formula. The added memory stores valuable information in each iteration and transfers it to the next 
iteration. The mutation promotes diversification of the optimizer in searching of the entire solution space 
for potential optima. The proposed updating formula overcomes wandering motion of the fireflies. Six 
numerical examples consistsing of three classical engineering optimization problems as well as three 
sizing optimization of truss structures were selected as the benchmark problems to evaluate performance 
of these modifications. It is empirically observed that adding memory can significantly improve the 
performance of the algorithm. Nevertheless, the second memory approach can be trapped in local optima. 
It is also seen that this point can be repaired using the mutation. The mutation is also useful when the 
initial population is distributed oddly over the search space. It is also observed that the proposed updating 
formula removes the zigzag motion of the fireflies in the updating process. Based on these observations, it 
is believed that the proposed method can be efficiently used in real life engineering optimization 
problems.  
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