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Abstract– Based on the notion of micro-structure in linear elasticity presented by Mindlin, a new 
extended continuum mechanics (ECM) formulation is derived which can be utilized to model the 
material behavior at atomic scale. An attempt has been made to present a formulation capable of 
producing the molecular dynamics (MD) simulation results with less computational effort. To this 
end, some new kinematical variables are defined and some constitutive relations are obtained from 
MD. To validate the proposed ECM formulation, it is applied to a properly defined sample 
problem and the response is compared with the MD simulation result and the classical continuum 
mechanics (CCM) solution.           
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1. INTRODUCTION 
 

Extended continuum mechanics (ECM) theories refer to the extension of the classical continuum 
mechanics (CCM) in microscopic space and short time scales. A material body may be envisioned as a 
collection of large number of deformable particles that contribute to the macroscopic behavior of the body 
[1]. Cosserat brothers [2] proposed a systematic development of the mechanics of continuous media, even 
though the seminal idea was previously presented by Voigt [3].  They considered each material point as a 
small rigid body which is able to rotate freely with respect to the neighboring material elements. This 
point of view constituted the first change of the traditional Cauchy’s paradigm on the description of the 
morphology of deformable bodies [4, 5]. Toupin [6] presented a continuum theory in which, in contrast 
with Cauchy paradigm, couple-stresses are included to the internal interactions. Mindlin [7] established a 
theory for an elastic solid in which each material point was considered as a deformable media. In the same 
year, Eringen and Suhubi [8, 9] proposed the theory of nonlinear microelastic continuum. Materials well 
described by Mindlin’s model were named micromorphic materials by Eringen and Suhubi. Green and 
Rivlin [10, 11] introduced higher-order micromorphic continua.  

The ability of existing ECM theories to predict the atomic structural behavior was examined by Chen 
et al. [12-15]. They concluded that although the micromorphic theory and the nonlocal theory of elasticity 
are the best candidates to give a corresponding response with the atomistic lattice dynamics and MD, these 
theories, at best, can only predict the time averaged values of molecular dynamic simulation results and no 
available ECM formulation is able to predict the instantaneous atomic response, e.g. atomic vibration. 
Multiscale continuum field theories in which the atomic data are injected in field equations by 
homogenization or statistical averaging of nano-scale variables have been used extensively [16-18]. 
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Recently, the ability of generalized continuum theories to capture dispersion characteristics at the atomic 
scale has been investigated [19]. It was shown that only certain models with specific kernel functions are 
able to follow dispersion curve of Borne-Karman’s atomic model [19]. The main drawback of the 
available ECM formulism is that due to the lack of concurrent coupling with the atomic scale response, the 
resulted formulation can only predict the time averaged behavior of nano-scale materials [ 17]. It was 
pointed out that the classical continuum mechanics with some improvements is enough for a sufficient 
description of the mechanical behavior of nano-materials in many situations [ 20], however, there is clear 
evidence that the response of nano-scale materials violates the predictions of the continuum models [ 21]. 
The sub nanometer wavelength periodic rippling of suspended graphene nano-membranes has been 
investigated using scanning tunnelling microscopy in [ 21]. Authors observed that as a result of special 
interactions between adjacent atoms, the atomic membrane has almost no resistance against out-of-plane 
deformations. This behavior is in sharp contrast with the phenomenology captured by the continuum plate, 
where the bending of a plate always induces the in-plane stretching and compression on the opposite sides 
of a neutral curved surface. Therefore, the malfunctioning of the continuum model goes beyond the issue 
of selecting an appropriate continuum formulation. Nevertheless, microscopic simulations based on a 
quantum mechanical description of the chemical binding, accurately describe the observed rippling mode 
and elucidate the origin of the continuum model breakdown [ 21]. Thus, it is expected that the concurrent 
coupling of the continuum formulism with modeling methods taking into account quantum effects may be 
able to give much better prediction. 

Accordingly, the present work is aimed to propose a general structure of a well-defined ECM theory 
in order to design a methodology for coupling the continuum mechanics with discrete methods such as 
MD. The desired formulation should be able to model not only the time average values of MD results but 
also the instantaneous ones. It is worth mentioning that due to the Brownian motion of atoms, exact 
prediction of these movements is neither possible nor desirable. But, due to their important contributions 
in material behaviors such as direction and path of crack growth or effects on the wave propagation 
characteristics of the material, it is very helpful to have a measure of their magnitude. 

 
2. CONFIGURATION AND DEFORMATION 

In classical continuum paradigm, the atomic degrees of freedom are removed and replaced by properly 

defined continuum field averages such as temperature, internal energy, stress and strain. In order to extend 

this paradigm to incorporate the material sub-structure, each material point referred to as macro-element, 

is endowed with an abstract space attached to it. More precisely, embedded in each material particle, it is 

assumed there exists a micro-volume V′ called micro-element. Consider a macro-element P in the 

reference configuration ߢோ. We assign a micro-volume Vᇱ to each macro element P. The sub-structure 

particles of the material, which are ignored in the classical continuum mechanics, are placed in this micro-

volume in a proper structure according to the macro physical state (e.g. temperature) of the reference 

configuration. The reference frame Xᇱ is placed at the centroid of Vᇱ (Fig. 1). Accordingly, each sub-

structure particle can be endowed with three rectangular components X୧
ᇱ, i ൌ 1,2,3 in the three-dimensional 

Euclidean space ࣟ. To specify the reference configuration of body ी, two sets of coordinates ܆ and ܆܆
ᇱ  

must be addressed. Dependence of ܆܆
ᇱ  on P declares that ܆܆

ᇱ  is a function of macro placement and physical 

state conditions of the material point P. To emphasize this dependence, a subscript X is used in ܆܆
ᇱ . 

Therefore, the reference configuration of ी can be fully described by two sets of coordinates X୧	and	Xଡ଼
ᇱ
୧ 

and we can write mathematically 

ࣥୖ:	ी → ࣟ ൈ Ը୔,											ሺX, Xଡ଼
ᇱ ሻ ∈ ሺࣟ ൈ Ը୔ሻ, Xᇱଡ଼౟ ൌ Xᇱଡ଼౟൫X୨, θ, … ൯   (1) 
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ρᇱሺई, tሻ ൌ lim୚→଴
୑ᇲ

୚
	,                                   (6-b) 

where V is the macro volume considered for the subset S. Two scalars ρ and ρᇱ are called macro and 

micro mass densities, respectively. It is noteworthy that assigning the micro mass density to each point of 

the continuum does not mean that an additional mass is assigned to each particle. In fact, as will be 

discussed under the definition of the kinetic energy, the micro mass is considered to model the effects of 

movements of sub-structure particles. These movements are naturally ignored in the CCM. 
Material form of the principle of conservation of mass can be presented as follows: 

ሺρ଴ ൅ ρ଴
ᇱ ሻ	dV ൌ ሺρ ൅ ρᇱሻ	dv,                           (7) 

where variables with subscript zero refer to the referential variables.  

b) Conservation of linear momentum 

To obtain the governing equations of motion, one straightforward method is to use energy concepts. 

In the present work an attempt is made to put no specific assumption on the behavior of the micro-

kinematical variables. To achieve this goal, in accordance with the Mindlin's approach [7], the variational 

method is utilized merely to derive the equation of linear momentum. 

c) Variational method 

We consider T, U and δW as the total kinetic energy of the body, the potential energy of the 
deformation and the virtual work done by external forces during a virtual displacement, respectively. The 
kinetic energy of a differential macro-volume dV consists of two parts. The first part is the kinetic energy 
of the mass ρdV with the translational velocity components ݑሶ ௜. The second part, which is ignored in CCM 
theory, is incorporated to include the kinetic energy of moving sub-structure particles. Therefore, the total 
kinetic energy of a differential macro volume of a generalized continuum can be written as 

dT ൌ
ଵ

ଶ
ρuሶ ୧uሶ ୧dV ൅ ∑ ଵ

ଶ
୒
஑ m஑൫uሶ ୧ ൅ uሶ ᇱ஑୧൯൫uሶ ୧ ൅ uሶ ᇱ஑୧൯,             (8) 

where ߙ runs over the total numbers N of constitutive sub-structure particles embedded in the micro-
volume Vᇱ and m஑ denotes the mass of the α-th particle. It can be assumed that the micro kinetic energy 
has the same volumetric rate in macro and micro-spaces. Thus, the kinetic energy of the macro-element of 
the generalized continuum can be simplified as 

dT ൌ ቂ
ଵ

ଶ
ρuሶ ୧uሶ ୧ ൅

ଵ

୚ᇲ
∑ ଵ

ଶ
୒
஑ m஑൫uሶ ୧ ൅ uሶ ᇱ஑୧൯൫uሶ ୧ ൅ uሶ ᇱ஑୧൯ቃ dV,				i ൌ 1,2,3.              (9) 

Introducing micro mass density ρᇱ ≜
∑ ୫ಉొ
ಉ

୚ᇲ
 and micro inertia density I୨୩ ≜

∑ భ
మ
୫ಉଡ଼ౠ

ᇲಉଡ଼ౡ
ᇲ ಉొ

ಉ

୚ᇲ
 the total kinetic 

energy of the generalized continua confined to domain R is the subsequent volume integral. 

T ൌ ׬ ቂଵ
ଶ
uሶ ୧uሶ ୧ሺρ ൅ ρᇱሻ ൅

ଵ

ଶ
I୨୩ψሶ ୧୨ψሶ ୧୩ቃ dV	ୖ .                        (10) 

One of the most important parts of the present ECM formulation is the assumed form for various 

internal interactions in the continua. Macro and micro structural events consist of interactions taking place 

at macro and micro scales. In addition, each scale imposes some effects on the other one. The virtual work 

done by these internal actions during a virtual displacement is called virtual stress work. The present 

framework which provides the possibility of utilizing MD simulation results in ECM formulation is quite 

flexible and various forms for the virtual stress work can be assumed. In what follows, an assumed form 

for the virtual stress work is presented and all governing equations are derived accordingly. 

δW୧୬ ൌ T୨୧	δF୧୨ ൅ σ୨୧
ᇱ 	δF୧୨ ൅ σ୧୨	δψ୧୨.                         (11)   
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δW୧୬ is the virtual stress work per unit macro volume. T୨୧ and F୧୨ are components of macro stress and 
macro deformation gradient tensors, respectively. The components of the macro deformation gradient 
tensor are 

F୧୨ ൌ
ப୳౟
பଡ଼ౠ

ൌ u୧,୨ .                             (12) 

Integrating the Eq. (11) between times tଵ and tଶ and simplifying, we have 

׬                            δW୧୬	dt
୲మ
୲భ

ൌ  

׬ ቂെ׬ ሺT୨୧ ൅ σ୨୧
ᇱ ሻ,୨	δu୧	dVୖ ൅ ׬ ሺT୨୧ ൅ σ୨୧

ᇱ ሻn୨	δu୧	dsபୖ ቃ 	dt ൅ ׬ ׬ σ୧୨	δψ୧୨ୖ 	dVdt
୲మ
୲భ

୲మ
୲భ

.       (13) 

The external action on each particle of the continuum consists of two parts: the body force per unit 
macro mass ܊ and the contact force per unit macro surface area ܜ. Therefore the virtual work done by 
external forces is 

δW ൌ ׬ ρb୧δu୧dV ൅ ׬ t୧δu୧dsபୖୖ .              (14) 

Accordingly, the equations of motion and related boundary conditions take the following forms 

ሺT୨୧ ൅ σ୨୧
ᇱ ሻ,୨ ൅ ρb୧ ൌ

ୈ

ୈ୲
ሾሺρ ൅ ρᇱሻuሶ ୧ሿ            (15-a) 

σ୨୧ ൌ െ
ୈ

ୈ୲
ሺI୨୩ψሶ ୧୩ሻ.                         (15-b) 

t୧ ൌ ൫σ୨୧
ᇱ ൅ T୨୧൯n୨									on	 ∂R.                  (15-c) 

d) Conservation of angular momentum 

The total moment of forces acting on the body with respect to the origin of the coordinate system 
can be represented by 

ࣾ ൌ ׬ ़ ൈ ρୖ܊ 	dV ൅ ׬ ़ ൈ dsபୖ	ܜ .             (16) 

By adopting the definition (16), the effects of any spin of material particles on the total moment of forces 

are neglected. Using Euler’s second law and applying material derivative and simplifying the results using 

Eq. (15-a) the local form of the conservation of angular momentum is obtained as follows: 

ϵ୧୨୩൫T୧୨ ൅ σᇱ୧୨൯ ൌ 0.                         (17) 

As can be seen, in contrast with assuming non-polar media, macro and micro stress tensors are not 
necessarily symmetric. 

e) Energy equation 

Let ࣟ̅, r, and q୧ stand for total internal energy, heat supply per unit mass and heat flux in the i-th 

direction on an infinitesimal surface with unit normal vector n, respectively. Then, the general form of the 

energy equation can be written as 

ୈ

ୈ୲
ሺܶ ൅ ࣟ̅ሻ ൌ ׬ ρb୧uሶ ୧dV ൅ ׬ t୧

୬uሶ ୧ds ൅ ׬ ρrdV െ ׬ q୧n୧dsபୖୖபୖୖ .             (18) 

Using Eqs. (10) and (15), and denoting the internal energy per unit volume by ε, after simplification we 
have 

ୈக

ୈ୲
ൌ ൫T୨୧ ൅ σᇱ୨୧൯uሶ ୧,୨ ൅ σ୨୧ψሶ ୧୨ ൅ ρr െ q୧,୧.              (19) 

This is the general local form of the equation of conservation of energy for the generalized continuum. 
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f) Constitutive relations and entropy inequality 

As declared by Coleman and Noll [22] entropy inequality places some constraints on the form of 
constitutive relations. The set of variables ൛F୧୨, ψ୧୨, θ	ሺor	ηሻ, X, tൟ can be selected as independent 
constitutive variables. To have a consistent theory, the constitutive relations must be defined for the 
dependent constitutive variables ൛T୧୨, σ୧୨, σ୧୨

ᇱ , q୧, η	ሺor	θሻ, ε	ሺor	Ψሻൟ as functions of independent ones, in 
which, η stands for entropy. The entropy inequality in the form of Clausius-Duhem inequality has the 
following form: 

ρηሶ ൅ div ቀ
୯

஘
ቁ െ

஡୰

஘
൒ 0.                             (20) 

Defining the Helmholtz free energy density as Ψ ≜ ε െ ηθ and assuming the constitutive relation for 
dependent variable as 

൛T୧୨, σ୧୨, σ୧୨
ᇱ , q୧, η	ሺor	θሻ, ε	ሺor	Ψሻൟ ൌ ࣠({F୧୨,θሺor	ηሻ, ሺ׏θሻ୧, ψ୧୨} )       (21)   

and using some mathematical manipulations Eq. (20) is rendered as: 

ρθሶ ቀη ൅
பஏ

ப஘
ቁ ൅ ρ

பஏ

ப܏
ሶ܏ െ ቂሺ܂ ൅ ોᇱሻ۴ି܂ െ ρ

பஏ

ப۴
ቃ ۴ሶ ൅

ଵ

஘
.ܙ ܏ െ ቀો െ

பஏ

பૐ
ቁૐሶ ൑ 0,            (22) 

in which ܏ ≜ સθ. 
This inequality must hold for any thermodynamic processሼρ, ρᇱ, ો, ોᇱ, ۴,ૐ, θ, rሽ. Consequently, the 

following constraints must be satisfied. 

η ൌ െ
பஏ

ப஘
, (23-a)  

பஏ

ப܏
ൌ 0, (23-b)ો ൌ

பஏ

பૐ
, (23-c) 

ሺ܂ ൅ ોᇱሻ۴ି܂ ൌ ρ
பஏ

ப۴
,  (23-d) ܙ. ܏ ൑ 0, (23-e) 

These are constitutive constraints imposed by the second law of thermodynamics on the proposed ECM 
formulation. If we restrict ourselves to infinitesimal deformations, Eq. (23-d) transforms to: 

ሺ܂ ൅ ોᇱሻ ൌ
பஏ

ப۳
 ,               (24) 

in which E is the infinitesimal Lagrangian strain tensor. 
  

4. IMPLEMENTATION 

In the previous sections, the governing equations of the generalized continuum were laid down. Clearly, 
the resulting system is highly indeterminate and 31 independent additional equations are needed. These 31 
additional equations consist of constitutive relations for T୧୨, σ୧୨, σ୧୨

ᇱ , q୧ and η. Among these, η does not 
appear in other field equations and can be ignored. The classical Fourier’s law of heat conduction can be 
adopted as the constitutive relations for q୧. The classical continuum mechanics theory can precisely be 
used in macro scales. Therefore, it is reasonable to assume that T୧୨s obey the same relation and have the 
same material constants as for the classical stress in CCM. 

T୧୨ ൌ C୧୨୩୪ε୩୪,                       (25) 

where C୧୨୩୪ represents classical elasticity tensor. As mentioned earlier, two generalized stresses ࣌ and 
࣌ᇱare built-in in the continuum formulation in order to model the effects of the micro structure. The role of 
࣌ᇱis to modify the macro stress in order to incorporate the microstructural effect (Eq. (15)). On the other 
hand, ࣌ couples the equations of motion in two scales (Eqs. (15-a) and b). Accordingly, similar to MD 
simulations, even in a constant macro state the micro state evolves continuously in the present ECM 
formulation. The constitutive relations of ો and ોᇱcan be obtained using MD simulation results. It is 
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Iଵଵ ൌ 139.21 ൈ 10ିଵ଺
୏୥

୅୬୥
 ,                                 (28-a) 

 Iଵଶ ൌ .0075 ൈ 10ିଵ଺
୏୥

୅୬୥
 ,                                 (28-b) 

Iଶଶ ൌ 149.977 ൈ 10ିଵ଺
୏୥

୅୬୥
 ,                                             (28-c) 

 ρᇱ ൌ 59.3156	
୩୥

୅୬୥య
 .                                  (28-d) 

The values of K and C can be found in literature (e.g. [24]). We use 800	
୛

୫.୏
 and 1960	

୎

୏.୩୥
  for K 

and C, respectively. According to the reported results in [25] and [26] and previous work by the authors 

[23], ρ and E are selected as 1000	
୩୥

୫య and 0.6	TPa, respectively. 

Obviously, the constants are completely in different orders of magnitude. It is more convenient to 

transform all equations to non-dimensional form. Utilizing the Buckingham π theorem, we select the 

following values as reference constants.ߠ଴ ൌ length of the graphene sheetl଴ ,ܭ	300 ൌ 47	Ang, mass of the 

carbon atom m ൌ 1.994	 ൈ 10ିଶ଺	kg and energy of the relaxed MD micro-volume at 300 K, U଴ ൌ
5.51782	ev obtained by long time averaging of the energy of the relaxed micro volume. Substituting the 

scaled quantities into the governing Eq. (27) turns the problem into a set of non-dimensional coupled 

nonlinear differential equation shown below. 

E∗
பమ୳∗

ப୶∗మ
൅

ப஢భభ
ᇲ∗

ப୶∗
ൌ

ୈ

ୈ୲∗
ൣ൫ρ∗ ൅ ρᇱ

∗
൯u∗ሶ ൧,           (29-a) 

ρ∗C∗
ப஘∗

ப୲∗
ൌ ቀE∗

ப୳∗

ப୶∗
൅ ોᇱ

∗
ଵଵቁ u∗ሶ ଵ,ଵ ൅ σ∗୨୧

ୢந౟ౠ

ୢ୲∗
൅ k∗

பమ஘∗

ப୶∗మ
,                       (29-b) 

σ∗ଵଵ ൌ െ
ୈ

ୈ୲∗
ሺI∗ଵ୩

ୢநభౡ

ୢ୲∗
ሻ,              (29-c) 

with boundary conditions 

u∗ ൌ u∗଴								on	 ∂R,                         (29-d) 

in which starred variables show the corresponding non-dimensional ones. The solution can be obtained by 

several numerical methods. Due to its generality and simplicity, we use the finite difference method. 

Furthermore, to get rid of difficulties, a trial and error procedure is used. In this procedure, we consider the 

temperature as a known trial function and obtain the resulting displacement function. In the next step, the 

obtained displacement function can be used to correct the previously used temperature function. This 

procedure is continued until the difference of the temperature values become negligible. The above 

mentioned procedure should be followed at each time step and the temperature and displacement can be 

obtained as functions of position and time. The MD simulation results and the CCM solution of the 

corresponding model are previously obtained by the authors [23].  

 
5. RESULTS AND DISCUSSIONS 

The displacement wave profiles for transmitted and reflected waves along the graphene sheet are 

compared in Figs. 5 and 6 respectively. Figure 5 shows the displacement wave shapes at ݐ ൌ  and ݏ݌	0.045

ݐ ൌ ݐ as functions of x. The shape of the reflected displacement wave at ݏ݌	0.1425 ൌ  is ݏ݌	0.375

depicted in Fig. 6. It can be seen that the predicted response by CCM and ECM are in good agreement 

with MD results. The difference between ECM response and MD simulation results in the wave front 

region can be a result of assumed model for heat transfer equation which is of parabolic type and has 
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