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Abstract— Based on the notion of micro-structure in linear elasticity presented by Mindlin, a new
extended continuum mechanics (ECM) formulation is derived which can be utilized to model the
material behavior at atomic scale. An attempt has been made to present a formulation capable of
producing the molecular dynamics (MD) simulation results with less computational effort. To this
end, some new kinematical variables are defined and some constitutive relations are obtained from
MD. To validate the proposed ECM formulation, it is applied to a properly defined sample
problem and the response is compared with the MD simulation result and the classical continuum
mechanics (CCM) solution.
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1. INTRODUCTION

Extended continuum mechanics (ECM) theories refer to the extension of the classical continuum
mechanics (CCM) in microscopic space and short time scales. A material body may be envisioned as a
collection of large number of deformable particles that contribute to the macroscopic behavior of the body
[1]. Cosserat brothers [2] proposed a systematic development of the mechanics of continuous media, even
though the seminal idea was previously presented by Voigt [3]. They considered each material point as a
small rigid body which is able to rotate freely with respect to the neighboring material elements. This
point of view constituted the first change of the traditional Cauchy’s paradigm on the description of the
morphology of deformable bodies [4, 5]. Toupin [6] presented a continuum theory in which, in contrast
with Cauchy paradigm, couple-stresses are included to the internal interactions. Mindlin [7] established a
theory for an elastic solid in which each material point was considered as a deformable media. In the same
year, Eringen and Suhubi [8, 9] proposed the theory of nonlinear microelastic continuum. Materials well
described by Mindlin’s model were named micromorphic materials by Eringen and Suhubi. Green and
Rivlin [10, 11] introduced higher-order micromorphic continua.

The ability of existing ECM theories to predict the atomic structural behavior was examined by Chen
et al. [12-15]. They concluded that although the micromorphic theory and the nonlocal theory of elasticity
are the best candidates to give a corresponding response with the atomistic lattice dynamics and MD, these
theories, at best, can only predict the time averaged values of molecular dynamic simulation results and no
available ECM formulation is able to predict the instantaneous atomic response, e.g. atomic vibration.
Multiscale continuum field theories in which the atomic data are injected in field equations by
homogenization or statistical averaging of nano-scale variables have been used extensively [16-18].
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Recently, the ability of generalized continuum theories to capture dispersion characteristics at the atomic
scale has been investigated [19]. It was shown that only certain models with specific kernel functions are
able to follow dispersion curve of Borne-Karman’s atomic model [19]. The main drawback of the
available ECM formulism is that due to the lack of concurrent coupling with the atomic scale response, the
resulted formulation can only predict the time averaged behavior of nano-scale materials [17]. It was
pointed out that the classical continuum mechanics with some improvements is enough for a sufficient
description of the mechanical behavior of nano-materials in many situations [20], however, there is clear
evidence that the response of nano-scale materials violates the predictions of the continuum models [21].
The sub nanometer wavelength periodic rippling of suspended graphene nano-membranes has been
investigated using scanning tunnelling microscopy in [21]. Authors observed that as a result of special
interactions between adjacent atoms, the atomic membrane has almost no resistance against out-of-plane
deformations. This behavior is in sharp contrast with the phenomenology captured by the continuum plate,
where the bending of a plate always induces the in-plane stretching and compression on the opposite sides
of a neutral curved surface. Therefore, the malfunctioning of the continuum model goes beyond the issue
of selecting an appropriate continuum formulation. Nevertheless, microscopic simulations based on a
quantum mechanical description of the chemical binding, accurately describe the observed rippling mode
and elucidate the origin of the continuum model breakdown [21]. Thus, it is expected that the concurrent
coupling of the continuum formulism with modeling methods taking into account quantum effects may be
able to give much better prediction.

Accordingly, the present work is aimed to propose a general structure of a well-defined ECM theory
in order to design a methodology for coupling the continuum mechanics with discrete methods such as
MD. The desired formulation should be able to model not only the time average values of MD results but
also the instantaneous ones. It is worth mentioning that due to the Brownian motion of atoms, exact
prediction of these movements is neither possible nor desirable. But, due to their important contributions
in material behaviors such as direction and path of crack growth or effects on the wave propagation
characteristics of the material, it is very helpful to have a measure of their magnitude.

2. CONFIGURATION AND DEFORMATION

In classical continuum paradigm, the atomic degrees of freedom are removed and replaced by properly
defined continuum field averages such as temperature, internal energy, stress and strain. In order to extend
this paradigm to incorporate the material sub-structure, each material point referred to as macro-element,
is endowed with an abstract space attached to it. More precisely, embedded in each material particle, it is
assumed there exists a micro-volume V' called micro-element. Consider a macro-element P in the
reference configuration k. We assign a micro-volume V' to each macro element P. The sub-structure
particles of the material, which are ignored in the classical continuum mechanics, are placed in this micro-
volume in a proper structure according to the macro physical state (e.g. temperature) of the reference
configuration. The reference frame X' is placed at the centroid of V' (Fig. 1). Accordingly, each sub-
structure particle can be endowed with three rectangular components X{ ,i = 1,2,3 in the three-dimensional
Euclidean space €. To specify the reference configuration of body B, two sets of coordinates X and Xy
must be addressed. Dependence of Xy on P declares that Xy is a function of macro placement and physical
state conditions of the material point P. To emphasize this dependence, a subscript X is used in Xy.
Therefore, the reference configuration of B can be fully described by two sets of coordinates X; and Xg(i

and we can write mathematically
Kr: B > € X Rp, X, Xy) € (ExRp), X'y, =X'x,(X;,6,...) (1)
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where Rp and 0 denote abstract attached manifold and the temperature at point P, respectively.
At each time, B takes the configuration y, with the new macro and micro placements x and %'y,
respectively. Accordingly, the macro and micro displacements can also be defined as:

U = x — Xi , i= 1,2,3. (2-3)

Wy =2y, — X'y, , =123, (2-b)
in which

xi=x(X,t), 1Lj=123. (3-a)

dxy = X (Xxp X, 0,00t), B =123, (3-b)

where x; and x; are called macro and micro deformation functions, respectively. These mapping functions
are assumed to be invertible and differentiable as many times as desired with respect to both X and t. For
brevity, the X subscript with the primed variables is omitted hereafter.

B, N _, ° I e
[ //_ L e

Fig. 1. Schematic representation of structured continuum in different configurations

It is more desirable to define some average properties in micro-volume and assign them to the macro
particle. This goal can be achieved by expanding wu’ with respect to X; about X{ = 0 assuming
infinitesimal micro deformations.

WX, 66, .) = u(X,0,6,8,..) + 0m | _oxr 4o )
j
Since x{(X,0,t,0,...) = X{(X,0,t,6,..) =0,
WX X,66,..) = Uy(X 4,6, .. )X, (5)
where (X, 1,6, ...) 2 % | <=0
j

As it can be seen ;; depends on macro variables and can be regarded as a material property of the
macro particle.
3. DERIVATION OF THE BASIC FIELD EQUATIONS
a) Conservation of mass

Consider a configuration x of the body B at time t in which B occupies region R bounded by a closed
surface dR. Each part (or subset) S of the body B is assumed to be endowed with two positive measures
M(S) and M'(S), called the macro and micro masses of the part S. Assuming that these measures are
absolutely continuous, the following limits can be defined

. M
p(x,t) = limy_q v’ (6-2)
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o', 1) = limy_o o, (6-b)
where V is the macro volume considered for the subset S. Two scalars p and p’ are called macro and
micro mass densities, respectively. It is noteworthy that assigning the micro mass density to each point of
the continuum does not mean that an additional mass is assigned to each particle. In fact, as will be
discussed under the definition of the kinetic energy, the micro mass is considered to model the effects of
movements of sub-structure particles. These movements are naturally ignored in the CCM.

Material form of the principle of conservation of mass can be presented as follows:

(po + pp) dV = (p +p") dv, ™
where variables with subscript zero refer to the referential variables.

b) Conservation of linear momentum

To obtain the governing equations of motion, one straightforward method is to use energy concepts.
In the present work an attempt is made to put no specific assumption on the behavior of the micro-
kinematical variables. To achieve this goal, in accordance with the Mindlin's approach [7], the variational
method is utilized merely to derive the equation of linear momentum.

c) Variational method

We consider T, U and W as the total kinetic energy of the body, the potential energy of the
deformation and the virtual work done by external forces during a virtual displacement, respectively. The
kinetic energy of a differential macro-volume dV consists of two parts. The first part is the kinetic energy
of the mass pdV with the translational velocity components ;. The second part, which is ignored in CCM
theory, is incorporated to include the kinetic energy of moving sub-structure particles. Therefore, the total
kinetic energy of a differential macro volume of a generalized continuum can be written as

dT = ~pu;i;dV + TN > m(a; +07%) (& + %), (8)

where a runs over the total numbers N of constitutive sub-structure particles embedded in the micro-
volume V' and m® denotes the mass of the a-th particle. It can be assumed that the micro kinetic energy
has the same volumetric rate in macro and micro-spaces. Thus, the kinetic energy of the macro-element of
the generalized continuum can be simplified as

dT =[5 pint; + o ZN T me (0 + %) (i + /)] dv, i=123. )
NLmax!“x; ©
2 X the total kinetic

j
energy of the generalized continua confined to domain R is the subsequent volume integral.

V’
1. . 1o
T=[; [;uiui(P +p)+ gljklllijlllik] dv. (10)

. . . ;A Zam®
Introducing micro mass density p’ = v

and micro inertia density [ £

One of the most important parts of the present ECM formulation is the assumed form for various
internal interactions in the continua. Macro and micro structural events consist of interactions taking place
at macro and micro scales. In addition, each scale imposes some effects on the other one. The virtual work
done by these internal actions during a virtual displacement is called virtual stress work. The present
framework which provides the possibility of utilizing MD simulation results in ECM formulation is quite
flexible and various forms for the virtual stress work can be assumed. In what follows, an assumed form

for the virtual stress work is presented and all governing equations are derived accordingly.
8Win = T]l 8F1] + O']-’i 6F1] + O'ij 81IJ1] (1 l)
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SWIN is the virtual stress work per unit macro volume. Tj; and Fj; are components of macro stress and
macro deformation gradient tensors, respectively. The components of the macro deformation gradient

tensor are
a uj

Fij =6_X]-

= U - (12)
Integrating the Eq. (11) between times t; and t, and simplifying, we have
Ji? sWn dt =
S [= J (T + 0 Sus AV + f (Ty + ofng Suy ds| dt + [ [ oy 8y dVat. (13)

The external action on each particle of the continuum consists of two parts: the body force per unit
macro mass b and the contact force per unit macro surface area t. Therefore the virtual work done by
external forces is

SW = fR pb18u1dV+ faRtiSuidS' (14)

Accordingly, the equations of motion and related boundary conditions take the following forms

(Tji + o) + pb; = % [(p + p" 3] (15-a)
D .

0ji = — o (kW) (15-b)

ti = (O'j,i + Tll)n] on 6R (15-C)

d) Conservation of angular momentum

The total moment of forces acting on the body with respect to the origin of the coordinate system
can be represented by

m= [, xxpbdV+ [ xxtds. (16)

By adopting the definition (16), the effects of any spin of material particles on the total moment of forces
are neglected. Using Euler’s second law and applying material derivative and simplifying the results using

Eq. (15-a) the local form of the conservation of angular momentum is obtained as follows:
eijk(Ti]' + O'Ii]') = 0. (17)

As can be seen, in contrast with assuming non-polar media, macro and micro stress tensors are not
necessarily symmetric.

e) Energy equation

Let &, 1, and q; stand for total internal energy, heat supply per unit mass and heat flux in the i-th
direction on an infinitesimal surface with unit normal vector n, respectively. Then, the general form of the

energy equation can be written as
D = . .
S (T+86) = Ja pbiwdV + [ tlads + [ prdV — [o qin;ds. (18)

Using Egs. (10) and (15), and denoting the internal energy per unit volume by &, after simplification we
have

D , . .
D_i = (Tji to ii)ui,j + o5y + pr— q i (19)

This is the general local form of the equation of conservation of energy for the generalized continuum.
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f) Constitutive relations and entropy inequality

As declared by Coleman and Noll [22] entropy inequality places some constraints on the form of
constitutive relations. The set of variables {Fi]-,q;ij,e (orn),X, t} can be selected as independent
constitutive variables. To have a consistent theory, the constitutive relations must be defined for the
dependent constitutive variables {Ti]-,cij,ci’j,qi,n (or 0), € (or ‘P)} as functions of independent ones, in
which, n stands for entropy. The entropy inequality in the form of Clausius-Duhem inequality has the
following form:

pit +div(2) -2 > 0. (20)

Defining the Helmholtz free energy density as ¥ £ € — 10 and assuming the constitutive relation for
dependent variable as

{Ty, 035, 035, @i, (or 6), & (or W)} = F({Fyz.0(or ), (V6D Yy} ) @
and using some mathematical manipulations Eq. (20) is rendered as:

pé(n+2—‘:)+p2—:g [T +e)FT-pZ|F+2qg- (o—g—l’)¢<o, 22)

in which g £ V0.
This inequality must hold for any thermodynamic process{p, p’, o, a’,F, P, 0, r}. Consequently, the
following constraints must be satisfied.

n=-— ae,(23a)——0(23b)6— ,(23-c)

(T+0)FT=pZ (23-d)q.g <0, (23-¢)

- p oF’
These are constitutive constraints imposed by the second law of thermodynamics on the proposed ECM
formulation. If we restrict ourselves to infinitesimal deformations, Eq. (23-d) transforms to:

(T+o) =22, (24)

in which E is the infinitesimal Lagrangian strain tensor.

4. IMPLEMENTATION

In the previous sections, the governing equations of the generalized continuum were laid down. Clearly,
the resulting system is highly indeterminate and 31 independent additional equations are needed. These 31

additional equations consist of constitutive relations for T, ojj, o};, q; and 1. Among these, 1 does not

1]’
appear in other field equations and can be ignored. The classical Fourier’s law of heat conduction can be
adopted as the constitutive relations for q;. The classical continuum mechanics theory can precisely be
used in macro scales. Therefore, it is reasonable to assume that Tj;s obey the same relation and have the

same material constants as for the classical stress in CCM.
T;j = Cijia€ws (25)

where Cjji represents classical elasticity tensor. As mentioned earlier, two generalized stresses o and
¢'are built-in in the continuum formulation in order to model the effects of the micro structure. The role of
¢'is to modify the macro stress in order to incorporate the microstructural effect (Eq. (15)). On the other
hand, o couples the equations of motion in two scales (Egs. (15-a) and b). Accordingly, similar to MD
simulations, even in a constant macro state the micro state evolves continuously in the present ECM
formulation. The constitutive relations of ¢ and ¢’'can be obtained using MD simulation results. It is

IJST, Transactions of Mechanical Engineering, Volume 39, Number M1 April 2015



An extended continuum mechanics formulation enhanced by ... 7

assumed that ¢ and ¢’ are functions of 6 and ;; explicitly and the dependence on macro kinematical
variables such as F is modeled through the implicit dependency on 8. To present the constitutive relations
for o and o', the first step is selecting a proper MD simulation cell. This MD cell is going to be a
representative of the micro-element placed in each material point. This volume should be neither too small
nor too large. In fact, the size of this volume should be about the validity border of the CCM. ;s are
measures of severity of changes in micro deformation. They can be interpreted as the components of the
micro strain tensor on the boundaries of the assumed microelement. Components of ¢ and ¢’ are some
measures of action in micro space. ¢’can be regarded as a multiple of the local Virial stress tensor at the
center of the MD domain (which is the place where micro and macro spaces are connected). Moreover, @
can be regarded as the Virial stress tensor on the boundary of the MD cell. This is shown schematically in
Fig. 2. These two quantities are assumed to be presentable via different functions of ¢ and 6. The adopted
constitutive relations can be summarized as:

_ v

n=--s (26-a) q = —K(E, 0)g, (26-b) 6 = o(¢, 0), (26-¢c) ¢’ = o’ (5, 6), (26-d)

T+o =5 (26%)

ll»'ii Tij

Fig. 2. Schematic representation of the micro element

To investigate the accuracy of the proposed model, it is used to predict the mechanical response of a
graphene sheet. The Brenner potential is used to model the inter-atomic interactions. In order to find a
proper size of microelement, several sizes have been investigated. The micro-elements are relaxed to their
stress-free state then stretched in one direction. Resulting Virial stress in the loading direction on each
element is compared with the corresponding expected value of Cauchy stress, which is the product of
Young modulus of graphene in the loading direction and the corresponding strain value. Results are shown
in Table 1. Accordingly, a volume consisting of 336 carbon atoms is considered as the micro-element. The
multiplier factor of ¢’'should be able to model the amplitude of local atomic motions. Analyzing the
previous MD simulation results (cf. 23[23], Sec. 3.1) shows that the maximum/minimum of local Virial
stresses regularly fluctuates above/below the Cauchy stress in the interval confined to one fifth of the
value of macro stress which is predicted by CCM. Therefore, twenty percent of the Virial stress at LCE
would be able to modify the local stresses. The MD model of the micro element can be relaxed at various
temperatures. Hereinafter, the relaxed models are loaded by imposing the different components of Y on
their boundaries and ¢ and ¢’ can be obtained from MD. In the present work, o and ¢’are evaluated at
five and eight distinct values of 6 and ;; respectively as shown in Fig. 3. Using these values constitutive
relations for ¢ and ¢’ in the form of two continuous functions can be constructed by adopting 3-cubic

spline approximation.
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Fig. 3. Data used for obtaining constitutive relations for and ¢'.Using these data two continuous functions can be
constructed for 6 and ¢’ by adopting 3-cubic spline approximation among these discrete values
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Table 1. Selecting the proper size of microelement

Number of atoms Virial stress (X 101°Pa) Percxt?lgti:rg;lgﬁ}c]oslggssrlson
40 3.98 20.4
152 4.61 7.8
170 4.75 5
336 491 1.8
416 5.21 1.3

To examine the ability of the proposed model in predicting the behavior of nano-scale materials, this
model is applied to a uniaxially loaded graphene sheet as shown schematically in Fig. 4. Assumed
problem is a long graphene strip loaded in one direction without any heat source or heat flux. Therefore, it
is reasonable to assume that the displacement components of the particles normal to the loading direction
are zero. The general governing equation and constitutive laws of the extended continuum mechanics can
be summarized as

0%u 903, _ D e
E =+ =5 [P +p)0l (27-a)
D . .
D_i = (Ty1 +6'11)0y,1 + 05055 — Q1 (27-b)
D .
011 = — 5, (llrai). 27-c)
a0
q= k3 (27-d)
€= pce . (27'6)
N o
Pl =T (27-f)
where
Zglm"‘xj’axl’(a N .
Ly £ —2———and u = uyy on JdR. E and p represent the modulus of elasticity and mass density of the
v

graphene sheet, respectively. These constants are used to model the macro state. On the other hand, p’, Ijj,
K and C stand for the micro mass density, micro inertia density, thermal conductivity and specific heat

capacity of the graphene sheet, respectively. These parameters can be calculated by means of MD
simulation. p'and Ij; (Eq. (10)) should be calculated at the reference configuration. We choose the fully

relaxed model at 300 K as the reference configuration. Then, the following values are obtained by long
time averaging of atomic positions of the fully relaxed MD model at 300 K.

Constant velocity boundary condition

- Free surface
Free surface &

y Fixed boundary condition

Fig. 4. Schematic representation of model used for MD simulation
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I, = 139.21 x 10—16AK—fg, (28-a)
I, =.0075 x 10-16AK—ngg, (28-b)
I, = 149.977 X 10—16AK—ngg, (28-c)
p’ =59.3156 A‘;ggg . (28-d)

The values of K and C can be found in literature (e.g. [24]). We use 800 % and 1960 K+(g for K
and C, respectively. According to the reported results in [25] and [26] and previous work by the authors
[23], p and E are selected as 1000 % and 0.6 TPa, respectively.

Obviously, the constants are completely in different orders of magnitude. It is more convenient to
transform all equations to non-dimensional form. Utilizing the Buckingham n theorem, we select the
following values as reference constants.f, = 300 K, length of the graphene sheetl, = 47 Ang, mass of the
carbon atom m = 1.994 x 1072° kg and energy of the relaxed MD micro-volume at 300 K, U, =
5.51782 ev obtained by long time averaging of the energy of the relaxed micro volume. Substituting the
scaled quantities into the governing Eq. (27) turns the problem into a set of non-dimensional coupled
nonlinear differential equation shown below.

L 0%u*  do); D . NS
B S = 2 [+ @92
« s 00 _ *6_11* r* “x * % * 0%0*

prC o = (B3t 0y Uy + 0T G+ K (29-b)

. D .., dy
011 = _E(I 1k dtik), (29-¢)

with boundary conditions

u* =u*, on dR, (29-d)

in which starred variables show the corresponding non-dimensional ones. The solution can be obtained by
several numerical methods. Due to its generality and simplicity, we use the finite difference method.
Furthermore, to get rid of difficulties, a trial and error procedure is used. In this procedure, we consider the
temperature as a known trial function and obtain the resulting displacement function. In the next step, the
obtained displacement function can be used to correct the previously used temperature function. This
procedure is continued until the difference of the temperature values become negligible. The above
mentioned procedure should be followed at each time step and the temperature and displacement can be
obtained as functions of position and time. The MD simulation results and the CCM solution of the
corresponding model are previously obtained by the authors [23].

5. RESULTS AND DISCUSSIONS

The displacement wave profiles for transmitted and reflected waves along the graphene sheet are
compared in Figs. 5 and 6 respectively. Figure 5 shows the displacement wave shapes at t = 0.045 ps and
t = 0.1425 ps as functions of x. The shape of the reflected displacement wave at t = 0.375 ps is
depicted in Fig. 6. It can be seen that the predicted response by CCM and ECM are in good agreement
with MD results. The difference between ECM response and MD simulation results in the wave front

region can be a result of assumed model for heat transfer equation which is of parabolic type and has
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infinite wave speed. Better results may be achieved by adopting the finite wave speed heat transfer model
[27]. It is worth mentioning that, although there is some inaccuracy in the wave front region, the ECM has
better accuracy in the affected region in which the actual physical response of material (e.g. crack growth
morphology and failure mechanisms) is controlled. One of the important characteristics of the present
ECM formulation over CCM setting is that this ECM formulation is able to mimic the instantaneous and
local MD simulation results. More precisely, due to the concurrent connections with the MD results in the
constitutive equations of ¢ and ¢’ the ECM responses fluctuate even in the case of constant external
actions. This unique property is the characteristic of the present ECM formulation which up to the authors'
knowledge is not seen in the other ECM formulations. The comparison between the scattered and reflected
velocity wave shapes are shown in Figs. 7 and 8, respectively. Compared with CCM, the present ECM
formulation can predict the local atomic motions. These local atomic vibration amplitudes are responsible
for the local material failure [23]. As mentioned before, although ECM has acceptable accuracy in
affected region, the wave front profile of ECM solution shows incorrect shape which is probably caused
by infinite wave speed characteristic of heat transfer equation. As simulation advances in time, ECM
model in which the temperature effects are included shows a better output and can effectively follow the
MD results. It is worth mentioning that even in the MD simulation, the exact prediction of atomic
movements is not possible and two MD runs with the same external inputs will show different
instantaneous outputs. However, the order of fluctuation of outputs is the same, of course. In the same
way, the instantaneous results of the present ECM formulation are expected to fluctuate in the same order
as the MD simulation ones. The shapes of strain wave are compared in Figs. 9 and 10. The well-known
phenomenon of duplication of the amplitude of the reflected strain wave which was seen in previous
researches [23] can also be correctly predicted by the newly presented ECM formulation. Furthermore,
since atomic behavior is modeled with continuous field equations, the computational time is in the order
of CCM while the MD simulation for sizes larger than one micro-meter is partially intractable, even with
the today's computers.

MD
 Classical continuum mechanics -
Extended continuum mechanics - -- - -

Displacement (Ang)
o
Q

1] 20 40
X (Ang)

Fig. 5. Comparison between displacement values obtained from CCM and ECM with MD results at t =
0.045 ps(right curves) and t = 0.1425 ps(left curves)
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Fig. 7. Comparison between shapes of velocity waves obtained from MD simulation
with those predicted by CCM and ECM
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with those predicted by CCM and ECM

Classical Continuum Mechanics
Extended Continuum Mechanics

0.004

Strain

0002

0 20 40

Fig. 10. Comparison between shapes of reflected strain waves obtained from MD
simulation with those predicted by CCM and ECM

6. CONCLUDING REMARKS

A new extended continuum mechanics model together with all field equations and general framework for
their application was presented. To validate the present ECM model, the model response was evaluated.
The assumed sample problem was a planar graphene sheet loaded in one direction. The response obtained
by ECM was compared with MD and CCM results. This comparison showed that the present ECM model
has acceptable performance in predicting the local instantaneous atomic motions. The proposed
framework can be used to obtain the response of a dynamically evolving system of material particles and
can effectively predict the MD results.
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