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Abstract– In this paper, based on the slab method of analysis, a novel and general approach is 
developed for studying the radial forging process with curved profile dies. The presented approach 
is not only more general with respect to previous studies, but it is also easier to understand and use 
and can be efficiently used for optimization of the die profile depending on the forging geometry 
and conditions. The obtained general equations reduce to those obtained in previous studies for the 
special case of linear dies. The process is also simulated by the finite element method to further 
enhance the results of the study. The obtained results provide useful information for the optimal 
design of the radial forging die.          
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1. INTRODUCTION 
 

Radial forging is a modern and cost effective process used for precision forging of round and tubular 
components, with or without an internal profile. Components produced by radial forging typically have 
good mechanical and metallurgical properties including smooth surface finish, preferred fiber structure, 
minimum notch effect and increased material strength [1-3]. 

Deformation in radial forging results form a large number of short stroke and high speed pressing 
operations by four hammer dies, while work-piece rotates and axially advances between the dies after each 
blow. Dies are arranged radially around the work-piece, as shown in Fig. 1. 

 
Fig. 1. Arrangement of dies 

Among parameters affecting the deformation pattern and quality of the forged product, the die shape is of 
prime importance [1, 4, 5]. Generally, the die profile shape is made of two sections, the inlet section, 
which forms a conical surface and the die land, which is cylindrical, as shown in Fig. 2. 
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Fig. 2. A schematic side view of the radial forging die 

Using slab method of analysis in [4], Ghaei et al. considered linear and circular (convex, concave and 
hybrid) profiles for the die inlet zone and studied the effects of the die shape on the deformation pattern 
and quality of radially forged products. In another study, Ghaei and Movahhedy [6] modeled the radial 
forging process by finite element method and studied the effect of the die shape in the cross-section area 
on the work-piece deformation. Using finite element analysis and microhardness test in [1], Sanjari et al. 
concluded that among dies with different linear and circular profiles, the die with a convex profile leads to 
a product with minimum inhomogeneity. 

In the above-mentioned studies, the analyses were restricted to special, namely linear and circular, die 
profiles. However, here a generalized slab method analysis is presented that is capable of modeling the 
radial forging process with virtually any curved shape die profile. Finite element simulations are also 
performed to further examine the effect of the die profile on the process parameters. 
This paper is organized as follows. The slab method formulation is developed in section 2. The modeling 
procedure is explained in section 3. The results of different analyses are presented and discussed in section 
4. Finally, the concluding remarks are summarized in section 5. 
 

2. THE SLAB METHOD ANALYSIS 

As shown in Fig. 3, three distinct regions of deformation exist in the radial forging process: (1) sinking 
zone, (2) forging zone and (3) sizing zone. The sinking zone is a part of the conical region of the die in 
which the die contacts the outer surface of the tube, but the inner surface of the tube has not reached the 
mandrel yet. In this region, both the inner and outer diameter of the tube are reduced under the die 
pressure. In the forging zone, the inner diameter of the tube has reached the mandrel and thus only the 
outer diameter of the tube is changed under the die pressure. As a result, the material flows in the axial 
direction and the tube length increases. Most of the axial deformation happens in this region. In the sizing 
zone, both the inner and outer diameters have almost arrived at their final size and thus the deformation in 
this region is mostly elastic. The principle function of this region is to improve the finish quality of the 
inner surface. 

 
Fig. 3. Different deformation zones in the radial forging process 

The following assumptions are made for the slab method analysis:  

1. The tube thickness remains constant throughout the sinking zone.  
2. Friction at the die-tube interface produces a constant friction shear stress.  
3. The normal stress acting on the slab does not vary over the cross-section and it is also a principle stress.  
4. The slab is free from shear stresses.  
5. The material is rigid-perfectly plastic. 
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a) The sinking zone 

Figure 4 shows the stresses acting on an element of material in the sinking zone. In order for the 
element to be in equilibrium, we must have: 

1 1 1 1 1 1 2 2( )( ) sin cos 0d A dA A pA A                                    (1) 

where σ1 is the normal stress parallel to the die surface, A1 and A2 are the cross sectional and lateral area of 
the slab,  p and τ are the radial pressure and shear stress due to friction, and α is the slab angle defined in 
Fig. 4. 

 
Fig. 4. Stresses acting on an element in the sinking zone 

The following geometrical relations can be deduced from Fig. 4: 

2 2
1 1

2

[ ( ) ( )] [2 ( ) ( ) 2 ( ) ( ) ]

2 ( )
cos

A R z z dA R z R z dz z z dz

dz
A R z

    




     


                  (2) 

The ‘ ʹ ’ symbol in this equation represents the first derivative with respect to z, ρ is the slab inner radius 
and R is its outer radius. Substituting Eq. (2) into Eq. (1) yields: 

2 2
1 12 [ ( ) ( ) ( ) ( ) ] [ ( ) ( )]

[2 ( ) ]sin [2 ( ) ]cos 0
cos cos

R z R z dz z z dz d R z z
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  
                        (3) 

which can be simplified to: 

2 2
1 12 [ ( ) ( ) ( ) ( ) ] [ ( ) ( )]

2 ( ) tan 2 ( ) 0

R z R z dz z z dz d R z z

pR z dz R z dz
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  
                                 (4) 

Also from the geometry in Fig. 4, we can write: 

tan ( )R z                                                                   (5) 

This reduces Eq. (4) to: 

1 1
2 2

2 [ ( ) ( ) ( ) ( )] 2 ( ) ( ) 2 ( )

[ ( ) ( )]

d R z R z z z pR z R z R z

dz R z z

    


     



                       (6) 

Next, we consider equilibrium of the element in the slab radial direction to obtain (see Fig. 5): 

3

( ) ( )

( )

P R z z

R z
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
                                                               (7) 
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Fig. 5. Free body diagram of an element in the sinking zone 

Where σ3 is the hoop stress on the slab as shown in Fig. 5. In the sinking region, the radial pressure on the 
die is small compared with the principal longitudinal and circumferential stresses, and therefore the 
approximate yield condition is given by: 

1 3                                                                         (8) 

where   is the yield stress of the workpiece material. Solving Eqs. (7) and (8) for p yields: 

1

( ) ( )
( )

( )

R z z
p

R z

  
                                                         (9) 

Substituting p from Eq. (9) into Eq. (6) gives: 

1 1 1
2 2 2 2 2 2

2 ( )[ ( ) ( )] 2 ( )2 ( )[ ( ) ( )]

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

d z z R z R zR z R z z
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  
                 (10) 

Using the reasonable assumption that the inner profile of the tube ρ(z) is parallel to its outer profile R(z), 
we will have: 

( ) ( )R z z                                                                      (11) 

Substituting Eq. (11) into Eq. (10) gives: 

1
2 2 2 2

2 ( )[ ( ) ( )] 2 ( )

[ ( ) ( )] [ ( ) ( )]

d R z R z z R z

dz R z z R z z

   
 

 
  

 
                                  (12) 

In the analysis of the radial forging process, it is normally assumed that the frictional shear stress varies 
according to the sticking condition [4, 6, 7]: 

3

m                                                                                (13) 

where m is the constant friction factor. Applying this assumption to Eq. (12) leads to: 

1
2 2

2 ( ) ( )[ ( ) ( )]
( )
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This equation gives the variation of the axial stress σ1 in the sinking zone with respect to the axial distance 
z. Using the derivative chain rule, we can write: 

1 11
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d d

dR R z dz

 

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                                                                (15) 
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Therefore, the σ1 variation along the radial distance R is as follows: 

1
2 2

2 [ ]
( )

[ ] 3

d R R R m

dR R R R

  


 
  

 
                                             (16) 

Equation (16) holds for a die that has a general curved shape profile. In the special case of the linear die 
with the inlet angle of α, we have: 

tanR                                                                        (17) 

Since the tube thickness t0 is assumed constant in the sinking zone, for a linear die we can write: 

0

2 2
0 0
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                                                  (18) 

Substituting Eqs. (17) and (18) into Eq. (16) gives: 

01

0 0

2
( )

(2 cos ) 3 sin

td R m

dR t R t R

 
 

  


                                            (19) 

which is the equation obtained previously by Lahoti and Altan in [7]. 

The corresponding radial pressure in the sinking zone is obtained by using Eq. (9). 

b) The forging zone 

According to Fig. 6, the force equilibrium of an element of material in the forging zone requires that: 

1 1 2( )( ) sin cos 0z z z z z z r r md A dA A p A A A                                       (20) 

where σz is the axial stress, Az and Ar are the cross sectional and lateral area of the slab,  p1 and τ1 are the 
radial pressure and shear stress due to friction on the die-workpiece interface and τ2 is the shear stress due 
to friction on the mandrel-workpiece interface. This can be simplified to: 

1 1 2sin cos 0z z z z r r mdA d A p A A A                                                (21) 

where: 
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Fig. 6. Stresses acting on an element in the forging zone 

in which Rm is the mandrel radius. Substituting Eq. (22) into Eq. (21) gives: 
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2 2
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which is simplified to: 

2 2

1 1 2

2 ( ) ( ) [ ( ) ]

2 ( ) tan 2 ( ) 2 0

z z m

m

R z R z dz d R z R

p R z dz R z dz R dz
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Also, from the geometry shown in Fig. 6, it follows that: 

tan ( )R z                                                                   (25) 

Substituting this relation into Eq. (24) yields: 

1 1 2
2 2

2 ( ) ( ) 2 ( ) ( ) 2 ( ) 2

[ ( ) ]
z mz

m

R z R z p R z R z R z Rd

dz R z R

       



                  (26) 

Now, we consider the equilibrium of the element in the radial direction. According to Fig. 7, the following 
relationship is obtained: 

1 2[ ( ) ] ( )m r r mR z R R z R                                                        (27) 

Where σr1 and σr2 are radial stresses at the die and mandrel surfaces, respectively, and σθ is the 
circumferential stress. 
 

 
Fig. 7. Free body diagram of an element in the forging zone 

By neglecting the radial stress variation through the element, we can assume that: 

1 2r r r                                                                        (28) 

Applying Eq. (28) to Eq. (27) results in: 

[ ( ) ] [ ( ) ]m r m rR z R R z R                                              (29) 

Therefore, the yield condition in the forging zone becomes: 

z r                                                                           (30) 

Considering the stress boundary condition at the tube-die interface yields: 
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1 1 ( )rp R z                                                                      (31) 

Substituting σr from Eq. (30) into Eq. (31), the following relationship is obtained: 

1 1( ) ( )zp R z                                                                    (32) 

Using this equation, Eq. (26) changes to: 

2
1 22 2

1
{ 2 ( ) ( ) 2 ( )[1 ( )] 2 }
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z

m
m

d
R z R z R z R z R

dz R z R
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

               (33) 

Assuming constant friction factor at the tube-die and tube-mandrel interfaces gives: 

1 2
1 2,

3 3

m m                                                              (34) 

Applying this relation to Eq. (33), after some simplification, results in: 

21 2
2 2
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m

Rd m mR z
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                              (35) 

This equation gives the variation of axial stress σz in the forging zone with respect to axial distance z. For 
obtaining the variation of axial stress σz along the radial distance R, the chain rule is used according to Eq. 
(15). This way, we will have: 

21 2
2 2

2
{ [1 ] }

[ ] 3 3
mz

m

Rd m mR
R R

dR R R R R

       
 

                                     (36) 

This equation holds for a die with an arbitrary curved shape profile. For the special case of linear dies, we 
use Eq. (17) to obtain: 

21 2
2 2

2
{tan [1 tan ] }

tan [ ] 3 3
mz

m

Rd m mR

dR R R R

   


   
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                       (37) 

Simplifying this equation, we get the result obtained previously by Lahoti and Altan in [7]: 

2
1 2

2 2 2 2

2[1 tan ] 2
{(1 ) }

tan [ ] [ ]3 3 tan
mz

m m

Rd m mR

dR R R R R

 
 


   

 
                (38) 

The radial pressure on the die surface is equal to radial stress σr: 

Forging r zp                                                                 (39) 

c) The sizing zone 

Only a small portion of the material is plastically deformed in the sizing zone. However, all the 

material is elastically deformed to the yield point. Thus, it will be assumed that the yield condition given 

by Eq. (30) is also satisfied in the sizing zone. Considering the equilibrium of forces acting on an element 

in the sizing zone gives (see Fig. 8): 

1 2 2 2
2 3

2 1
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( )3
z
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dz R R t

  
   


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Fig. 8. Stresses acting on an element in the sizing zone 

Integrating Eq. (40) yields: 

1 2 2
2 3

2 1

( )2
( ),

( )3
m

z ze e
m

m R m R
z z L z L

R R t
   

    


                                 (41) 

where σz=σze at z=ze.  
When ze=L3 we have σze=σf , where σf is the front pull per unit area, and when ze=L2 , σze is the axial 

stress obtained from the analysis of the forging zone.  
Using Eq. (30), the radial pressure in the sizing zone is: 

 Sizing zp                                                                      (42) 

 
3. FINITE ELEMENT MODELING PROCEDURE 

If we ignore the small gap between dies at the end of their stroke, the tube loadings and boundary 
conditions may be a function of r and z only (and not a function of θ). This means that the problem can be 
modeled as axisymmetric to reduce the computational time. The finite element analyses were performed 
using a verified FEM code previously used in [1, 4, 6, 8]. Since the deflection of the die and mandrel is 
very small compared to that of the deforming tube, it is accurate enough to assume that they are rigid 
bodies. The material was assumed to be perfectly plastic with a yield point of 120MPa  [4]. To model 
the friction in the contact surfaces, the penalty formulation was used. The limiting shear stress was 
obtained by 3m , where  m= 0.15 is the constant friction factor commonly used for cold forging 
conditions [7]. The process parameters, including tube, die and mandrel geometry are presented in Table 
1. 

Table 1. Tube, die and mandrel geometry (mm) 

Outer radius of the preform 100 

Thickness of the preform 7 

Outer radius of the product 90 

Thickness of the product 4 

Length of the die inlet 71 

Length of the die land 10 

Radius of the mandrel 86 
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4. RESULTS 

a) Comparison of finite element and slab method results 

The slab method equations obtained in Sec. 2 were solved numerically using an algorithm based on the 
Runge-Kutta scheme. Figure 9 compares the radial pressure distribution obtained by the slab method and 
the finite element analysis for a linear die with inlet angle of 8◦. 

 
Fig. 9. Comparison of the results of slab method and FEM 

The difference between pressures in the sinking zone stems from the bending of the tube in the die 
inlet that is not considered in the slab method [4]. In practice, during the dies impact, the tube is bent a 
little and the material is entered to the sinking zone. However, in the slab method analysis, it was assumed 
that the material flows sharply to the sinking zone. This bending causes an easier material flow to the 
sinking zone and less radial pressure at this zone as predicted by the finite element analysis. Another 
source of discrepancy between FEM and slab method results can be attributed to the changes in the radial 
pressure along the thickness of the tube that was assumed to be constant in the slab method analysis [4]. 

b) Effect of the die profile shape on the product quality 

In order to study the effect of the die profile shape on the product quality, three different profiles 
were considered for the die, namely linear, quadratic and cubic order profiles, as shown in Figs. 10, 11 and 
12, respectively. 

 
Fig. 10. Die with linear profile 

 
Fig. 11. Die with quadratic (2nd order) profile 

 
Fig. 12. Die with cubic (3rd order) profile 
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In the case of curved shape dies, to achieve a more homogenous structure in the product, it is 
recommended to use a profile in which the slope gradually changes to zero (equal to the slope of the sizing 
zone) at the end of forging zone [4]. Therefore, the two employed curved profiles are chosen to satisfy this 
recommendation. 

The residual stress distribution was selected as the measure of the product quality since it is an 
indication of the degree of the deformation homogeneity. In other words, the more homogenous the 
deformation, the smaller the residual stress [6]. Furthermore, tensile residual stresses may lead to the 
opening of cracks which accelerates the failing of the tube while compressive stresses close the cracks and 
increase the tube life. Moreover, these stresses have a fundamental effect on the dimensional stability, 
wear resistance and fatigue life of the tube and are treated as one of the most important parameters of the 
surface quality. 

Figure 13 compares the finite element solution for the residual Von-Mises stress distribution, i.e. the 
stress distribution after completion of the entire radial forging process [9] in the inner surface of the tube 
for different die profiles. As this figure shows, the tube tensile residual stress is minimum for the die with 
the quadratic profile while it is maximum for the die with the linear profile. Furthermore, the tube residual 
stress distribution is more uniform for dies with curved shape profiles. In these cases, the gradual change 
of the profile slope leads to more steady and homogenous deformation and flow of the tube between the 
die and mandrel, producing more favorable residual stress distribution in the tube. 

 
Fig. 13. Residual stress distribution for different die profiles 

b) Effect of the die profile shape on the radial pressure distribution 

Figure 14 shows the radial pressure distribution along the forging axis for the three different 
die profile shapes. 

 
Fig. 14. Effect of the die profile shape on the radial pressure distribution 
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As illustrated in this figure, the die with quadratic order profile creates the largest radial pressure and 

consequently requires the largest forging force and energy. Furthermore, the position of the neutral plane 

moves towards the preform in this case. Therefore, either smaller axial force feed or smaller reduction in 

area should be considered in order to prevent overloading of machine.  

On the other hand, the cubic order curve creates a smaller radial pressure on the die while the position 

of the neutral plane does not change significantly in this case compared with the linear die. Since the 

product quality (the residual pressure distribution shown in Fig. 13) is also desirable for the cubic order 

profile, it may be an optimal option for the radial forging die. It is to be noted that while finding the most 

optimal die profile is not the concern of this paper, the relations obtained in Section 2 can be easily used 

for further optimization of the die profile shape depending on the forging geometry and conditions. 

 
5. CONCLUSION 

The slab method of analysis was used to investigate the radial forging of tubes with curved profile dies. 

The presented approach is not only more general with respect to previous studies, but it is also easier to 

understand and use and can be efficiently used for optimization of the die profile depending on the forging 

geometry and conditions. The obtained general equations reduce to those obtained in previous studies for 

the special case of linear dies. Good agreement was observed between the results of the slab method and 

finite element analysis. It was shown that, the die with quadratic order profile provides the best residual 

stress distribution compared with the linear and cubic order dies, but it requires the largest forging force 

and energy. The cubic order die, on the other hand, provides a good residual stress distribution in the 

product and requires a smaller force and energy.  
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