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Abstract– A novel technique is investigated for PID controller adaptation in order to control the 
temperature of a liquid-phase reactor tank by using a heat exchanger system. As for nonlinearity, 
time delay problems and model uncertainties introduced by the heat exchanger, an interval type-2 
fuzzy system (IT2FS) is implemented to enhance and improve the total control performance. 
Moreover, the fuzzy inference rules which enable the adaptive adjustment of PID parameters are 
established based on error and error variations. Target tracking, oscillation control and error 
evaluation for the proposed controller are compared with previously performed control strategies 
on the mentioned heat exchanger system. The results show that the adaptive technique for PID 
gain based on IT2FS has lower error and strengthened capacity for external oscillation control and 
also an acceptable tracking capability.           
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1. INTRODUCTION 
 

The dynamics of many industrial systems including heat exchangers is accompanied by complexity, time 
delay, nonlinearity and uncertainty. Such systems are usually controlled by fixed-parameter linear 
controller structures with effective performance around the design conditions. As a result, control systems 
have to be adapted to the new conditions confronted due to variations throughout the system life-time and 
controller gains are also required to be adjusted to various possible operating conditions. Therefore, online 
adjustment of controller parameters is required to maintain the desired performance of the system as a 
whole. Due to simplicity and robustness, PID controllers are the most commonly used control algorithms 
in industrial systems. In fact, PID controllers and their derivatives are used in ~ 90% of industrial 
processes [1, 2]. Widespread and pervasive application of PID controllers has led to the development of 
various PID tuning and adaptation techniques [2]. However, the search is still on for  new tuning and 
adaptation techniques [3]. In the current article, a novel method is investigated to control the temperature 
of a heat exchanger, in order to adjust the temperature of the flowing liquid to decrease the time needed to 
gain the desired temperature and also to make the system more robust in terms of disturbances. 

Heat exchangers are commonly used in industrial applications for heat exchange between different 
stages within a plant. Heat exchange control is a complex process due to nonlinear behaviour and 
complexity as a result of phenomena, like leakage, friction, temperature dependent flow properties, 
contact resistance, unknown fluid properties, etc. [4, 5].  However, such plants are already controlled 
properly by conventional PID controllers (or its derivatives) [4-6]. 

Many conventional process control strategies are performed on heat exchange systems. PID [7-9], 
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IMC-PID [10], GPC [11, 12] and fuzzy [13] control strategies are performed and compared to MPC. In 
this study, Type-2 fuzzy system is applied for the optimization of PID controller and parameter tuning. A 
combination of fuzzy type-2 and conventional PID enables us to utilize the advantages of both systems at 
the same time. 

Fuzzy logic was introduced by Zadeh [14, 15] as a model of human thinking process in order to 

remove the gap between the precision of mathematics and the innate imprecision of the real world. Fuzzy 

thinking provides a systematic procedure for transforming a knowledge base into a nonlinear mapping. 

Over past two decades, it has been shown that fuzzy systems can be considered as universal 

approximators; hence approximating the continuous functions on a compact set to a given accuracy [16-

20]. The main property distinguishing fuzzy logic is the capacity to represent and model the imprecision 

and uncertainty by attributing a value at the interval [0, 1] to each point in a fuzzy set. However, the 

imprecision in such a classical fuzzy system - sometimes called type-1 fuzzy logic system (T1FLS) - is not 

fully exploited and can bring about unsatisfactory performance. 

Over the past few years, considerable attention has been devoted to another fuzzy system called type-

2 FLS (T2FLS). In T2FLS, the uncertainty is represented using a function, which is a type-1 fuzzy number 

itself. The functions of type-2 fuzzy sets have a 3D membership pattern and include a footprint of 

uncertainty (FOU) with the new 3rd dimension of type-2 fuzzy sets. A FOU provides additional degrees of 

freedom that make it possible to model and handle uncertainties directly. Consequently, T2FLS has the 

potential to outperform the T1FLS in such cases [21, 22]. Such an advantage is quite important, keeping in 

mind that modelling the linguistic information and decision making are the main applications of FLS 

[23].A comparison of T2FLS and T1FLS is also given in [24]. 

Mamdani recognized the feasibility of fuzzy logic concept for controlling dynamic systems [25]. 

Mamdani and Assilian [26] developed the first fuzzy logic controller (FLC). Interval type-2 fuzzy logic 

systems have been successfully implemented for controller design. The advantageous view of type-2 fuzzy 

controller has been demonstrated in several applications such as controlling the liquid-level [27, 28], 

multi-machine power systems voltage [29], autonomous mobile robots [30, 31] and nonlinear dynamic 

plants [32] control. Furthermore, type-2 fuzzy model based on model predictive control structures is also 

suggested [33]. Moreover, state observers based on indirect adaptive internal type-2 fuzzy controller are 

introduced [34]. In addition, control structures based on ordinary fuzzy logic systems have been 

generalized to type-2 fuzzy systems [35, 36]. 

The main shortcoming of fuzzy control strategy is the uncertain knowledge used for building the 

fuzzy rules, resulting in uncertain antecedents or consequents and thus uncertain antecedent or consequent 

membership functions [37] and complexity and time-consuming computational time at the same time. 

Type-1 fuzzy systems are unable to handle such uncertainty. On the other hand, type-2 fuzzy systems are 

very useful in the determination of exact membership function. 

Many research efforts have been dedicated to the design of fuzzy-PID type controllers and its 

derivatives. Automate control of rotary dental instrument files fail through the development of a fuzzy 

logic controller to maintain the file [38]. Robust fuzzy PID control schemes are proposed by incorporating 

an optimal fuzzy reasoning into a well-developed PID type of control framework [39]. Also, bounded-

input bounded-output (BIBO) stability analysis of a fuzzy PID control system has been performed [40]. A 

function-based evaluation approach is proposed for a systematic study of F-PID like controllers addressing 

simplicity and nonlinearity issues [41]. The optimal PID controller parameters for the adaptive Particle 

Swarm Optimization method based on Cloud Theory are also applied to fuzzy PID controllers [42]. 
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2. HEAT EXCHANGER SYSTEMS 
 
The heat exchanger system used in this study is investigated in other studies for control purposes and 
identified by experimental data in the reference [43]. A typical chemical reactor with the accompanying 
heating system is shown in Fig. 1. Vapour flow into the heating system is adjusted and manipulated by a 
control valve in order to change the liquid temperature inside the tank at the desired set-point. 
Temperature variations of the inflow to the main tank can be considered as the main disturbance in the 
whole system [13]. 

Heat Exchanger

Valve

Steam Flow

Liquid inflow CSTR

TCC

Product

 
Fig. 1. Reactor with a heat exchanger system 

A step change is applied to the the control valve voltage and the influence on temperature is recorded 
as a function of time in order to obtain the first order model. The normalized measured response is also 
illustrated in Fig. 2. This type of response is a schematic of first-order-plus-dead time (FOPDT) systems. 
The two-point method is also used to identify the model function and its parameters [44]. This technique is 
based on the calculation of t1 and t2 points which are 28.3 % and 63.2% fractions of the system final 
response time, respectively. These are used for the estimation of time constant, ߬ ൌ 1.5ሺݐଶ െ  ଵሻ and deadݐ
time, ߠ ൌ ଶݐ െ ߬. The heat exchanger transfer function is calculated as follows by taking ݐଵ ൌ 21.8 and, 
ଶݐ ൌ 36: 

ሻݏሺܪ                                           ൌ
షഇೞ

ఛ௦ାଵ
 (1)

Here, θ = 14.7 sec and τ = 21.3 sec. 

 
Fig. 2. The normalized measured step response of the plant 
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3. INTERVAL TYPE-2 FUZZY SETS 
 
A type-2 fuzzy set in the universal set X is denoted as Ã ,which is characterized by a type-2 membership 
function (MF) ߤÃሺݔሻ in Eq. (2) and referred to as a secondary membership function or a secondary set, 
which is a type-1 fuzzy set at the [0,1] interval. ௫݂ሺݑሻ is a secondary grade, which is the amplitude of a 
secondary membership function; i.e, 0  ௫݂ሺݑሻ  1  . The domain of a secondary membership function is 
called the primary membership of x. ܬ௫ is the primary membership of x, where u ∈ ௫ܬ ⊆ ሾ0,1ሿ	∀ݔ ∈ ܺ ;u is 
a fuzzy set at the [0,1] interval, rather than a crisp point [45]: 

Ã ൌ න Ãߤ
௫∈

ሺݔሻ/ݔ ൌ න ቈන ௫݂ሺߤሻ/ߤ
ఓ∈ೣ


௫∈

,ݔ/ ௫ܬ ⊆ ሾ0,1ሿ (2)

when ௫݂ሺݑሻ ൌ 1, ∀u ∈ ௫ܬ ⊆ ሾ0,1ሿ. Secondary MFs are interval sets such that ߤÃሺݔሻ can be called an 
interval type-2 MF [45-48]. Therefore, the type-2 fuzzy set can be rewritten as: 

Ã ൌ න Ãߤ
௫∈

ሺݔሻ/ݔ ൌ න ቈන ߤ/1
ఓ∈ೣ


௫∈

,ݔ/ ௫ܬ ⊆ ሾ0,1ሿ (3)

Also, a Gaussian primary MF with an uncertain mean and fixed standard deviation having an interval 
type-2 secondary MF can be called an interval type-2 Gaussian MF. A 2D interval type-2 Gaussian MF 
with an uncertain mean at the ሾ݉ଵ,݉ଶሿ interval and a fixed standard deviation σ is shown in Fig. 3, which 
can be expressed as: 

ሻݔÃሺߤ ൌ ݔ݁ െ
1
2
ቀ
ݔ െ ݉
ߪ

ቁ
ଶ
൨ , ݉ ∈ ሾ݉ଵ,݉ଶሿ (4)

It is obvious that the type-2 fuzzy set is described within a region called the footprint of uncertainty 
(FOU) which is bounded by upper and lower MFs denoted by ߤÃሺݔሻ and ߤÃሺݔሻ, respectively.  

In this paper, the input and output variables will be represented by IT2FSs as they are simpler to be 
used in comparison with the general T2FSs and also distribute the uncertainty evenly among all 
admissible primary memberships [48]. 

)'(~ x
A



)'(~ x
A



'x

xJ

 
 Fig. 3. Interval type-2 fuzzy set with an uncertain mean at the ሾ݉ଵ,݉ଶሿ interval 

 
4. INTERVAL TYPE-2 FUZZY LOGIC CONTROLLER 

 
The basics of fuzzy logic are the same for T1 and T2 sets and are also similar for any type-n set in general. 
Higher versions just indicate a higher ‘‘degree of fuzziness’’. Since the nature of membership functions 
change by n value, the operation is dependent on the membership functions. However, the basics of fuzzy 
logic are independent of the nature of membership functions and hence remain unchanged [24]. 

IT2FLC contains four fuzzifier components: inference engine, rule base, and output processing that is 
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inter-connected as shown in Fig. 4 [49]. In IT2FLC, a crisp input is first fuzzified into input IT2FSs, which 
activate the inference engine and the rule base to produce the output IT2FSs [50]. The IT2FLC rules will 
remain the same as T1FLC but the antecedents and/or the consequent will be represented by IT2FSs. The 
IT2 fuzzy outputs of the inference engine are then processed by the type reducer, which combines the 
output sets and performs a centroid calculation that leads to T1FSs, called type-reduced sets. After the 
type-reduction process, the type-reduced sets are defuzzified to obtain crisp outputs by averaging the type-
reduced set. 

Type-reducer

Defuzzifier

Fuzzifier
Inference 

engine

Rule base

x
Crisp Inputs

Fuzzy 
Input sets

Fuzzy 
Output sets

Output processing

Crisp Output

Type-reduced set

u

 
Fig. 4. Structure of the type-2 fuzzy logic system 

Consider a type-2 FLS having p inputs ݔଵ ∈ ଵܺ, … , ݔ ∈ ܺ and one output y ∈ Y. Type-2 fuzzy rule 
base consists of a collection of IF-THEN rules, as in type-1. M rules are assumed and the rule of a type-2 
relation between the input space ଵܺ ൈ ܺଶ ൈ …ൈ ܺ and output space Y can be expressed as: 

ܴ ∶ ෨ଵܨ	ݏ݅	ଵݔܨܫ
	ܽ݊݀ … 	ܽ݊݀ ݔ ݏ݅ ,෨ܨ ܰܧܪܶ ݕ ݏ݅ ෨ܩ ݈ ൌ 1,2, … (5) ܯ,

where ܨ෨
s are antecedent type-2 sets (݆ ൌ 1,2, … ,  .are consequent type-2 sets ݏ෨ܩ and (

The inference engine combines the rules and gives a mapping from the input to the output type-2 
fuzzy sets. Thus, we have to compute the unions and intersections of type-2 sets as well as the 
compositions of type-2 relations. The output of the inference engine block is a type-2 set. By using the 
extension principle of the type-1 defuzzification method, type reduction transforms type-2 output sets of 
the FLS to a type-1 set called ‘‘reduced-type set’’. This set may then be defuzzified to obtain a single crisp 
value. Many type reduction procedures such as centroid, height, modified weight, and center-of-sets are 
available [45, 47-48, 51], among which the center-of-sets used in this paper is described as follows: 

ܻ௦ሺܻଵ, … , ܻெ, ,ଵܨ … , ெሻܨ ൌ ሾݕ, ሿݕ ൌ න
௬భ

…න
௬ಾ

න
భ

…න 1/
∑ ݂ݕெ
ୀଵ

∑ ݂ெ
ୀଵಾ

 (6)

where ܻ௦ is the interval set determined by two end points ݕ and ݕ and ݂ ∈ ܨ ൌ ቂ݂, ݂

ቃ. In the 

meantime, an interval type-2 FLS with singleton fuzzification and meet under minimum t-norm ݂ and 
݂

can be obtained as: 

݂ ൌ ݉݅݊ ቂߤி෨
ሺݔଵሻ… ൯ݔி෨൫ߤ

ቃ (7)

and, 

݂

ൌ ݉݅݊ ቂߤி෨భሺݔଵሻ…ߤி෨భ൫ݔ൯ቃ 

(8)

Also, ݕ ∈ ܻ	ܽ݊݀		ܻ ൌ ݕൣ
,  ෨ (the centroidܩ ൧ is the centroid of the type-2 interval consequent setݕ

of type-2 fuzzy set) [1-3].  ݕ	ݕ) ∈ ܻ௦) can also be expressed as: 

ݕ ൌ
∑ ݂ݕெ
ୀଵ

∑ ݂ெ
ୀଵ

 (9)
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where ݕ is a monotonic increasing function of ݕ. Also, ݕ (Eq. 6) is the minimum associated only with ݕ, 
and  ݕ (Eq. 6) is the maximum associated only with ݕ. Note that ݕ and ݕ depend on a mixture of ݂ or 
݂

 values. Hence, the left-most and the right-most points (ݕ	and	ݕ, respectively) can be expressed as 

[47]: 

ݕ ൌ
∑ ݂

ݕ
ெ

ୀଵ

∑ ݂
ெ

ୀଵ
 (10)

and, 

ݕ ൌ
∑ ݂

ݕ
ெ
ୀଵ

∑ ݂
ெ

ୀଵ
 (11)

The Karnik-Mendel (KM) algorithm is briefly introduced in the following paragraphs [52]. Without 
loss of generality, assume that ݕ

 and ݕ are arranged in an ascending order (ݕ
ଵ  ݕ

ଶ  …  ݕ
ெ and 

ଵݕ  ଶݕ  …   : is then computed following these stepsݕ .(ெݕ
Step1. Eq. 12 is solved by initially setting ݂

 ൌ ሺ݂

 ݂ሻ/2 for ݅ ൌ 1, 2, … ݂ where ,ܯ,


 and ݂ have been 

pre-computed using (7), (8) and letting	ݕ
ᇱ ൌ  .ݕ

Step2. Find ܮ	ሺ1  ܮ  ܯ െ 1ሻso that ݕ
  ݕ

ᇱ  …  ݕ
ାଵ. 

Step3. Compute ݕ in Eq. 12 with ݂
 ൌ ݂


 for ݅  and ݂ ܮ

ଵ ൌ ݂ for ݅  ݕ  and letting ܮ
ᇱᇱ ൌ  .ݕ

Step4. If ݕ
ᇱᇱ ് ݕ

ᇱ, then go to Step 5. If  ݕ
ᇱᇱ ൌ ݕ

ᇱ, then set ݕ ൌ ݕ
ᇱᇱ and go to Step 6. 

Step5. Let ݕ
ᇱ ൌ ݕ

ᇱᇱ and return to Step 2. 
The separation point (ܮ) can be determined using this algorithm, one side using lower firing strengths 

(݂) and the other upper firing strengths (݂

). Therefore, ݕ can be given as: 

ݕ ൌ
∑ ݂ݕ


ୀଵ  ∑ ݂


ݕ
ெ

ୀାଵ

∑ ݂
ୀଵ  ∑ ݂

ெ
ୀାଵ

ൌݍ
ݕ





ୀଵ

  ݍ
ݕ



ெ

ୀୖାଵ

 (12)

Where ݍ
 ൌ ݂/ܦ, ݍ

 ൌ ݂

ܦ  andܦ/ ൌ ∑ ݂

ୀଵ  ∑ ݂
ெ

ୀାଵ . 
 is also computed based on a similar procedure. In Step 2, ܴ ሺ1ݕ  ܴ  ܯ െ 1ሻ is to be determined, 

so that  ݕோ  ᇱݕ  …  ோାଵ. In Step 3, ݂ݕ
 ൌ ݂ for ݅  ܴ and ݂

 ൌ ݂

 for ݅    can also be rewrittenݕ .ܴ

as: 

ݕ ൌ
∑ ݂ݕ
ோ
ୀଵ  ∑ ݂


ݕ

ெ
ୀୖାଵ

∑ ݂ோ
ୀଵ  ∑ ݂

ெ
ୀୖାଵ

ൌݍݕ
ோ

ୀଵ

  ݍ
 ݕ

ெ

ୀୖାଵ

 (13)

Where ݍ ൌ ݂/ܦ, ݍ
 ൌ ݂


ܦ  andܦ/ ൌ ∑ ݂ோ

ୀଵ  ∑ ݂
ெ

ୀୖାଵ .  

The defuzzified crisp output from an IT2FLS is the average of ݕ and ݕ. 

ሻݔሺݕ ൌ
ݕ  ݕ
2

 (14)

5. ADAPTIVE FUZZY PID CONTROLLER DESIGN USING INTERVAL 
 TYPE-2 FUZZY LOGIC SYSTEM 

 
Adaptive interval type-2 fuzzy PID (AIT2FPID) control based on a PID algorithm performs the reasoning 
through calculating the error (e) and error derivative (ec) of the system by using type-2 fuzzy inference 
rules and adjusts the PID parameters by fuzzy matrix rule tables. In designing adaptive fuzzy controllers, 
the error and its derivative are assumed as inputs, which can satisfy the need for self-tuning of PID 
parameters based on various (e) and (ec) values at different times. The PID algorithm is also presented as: 
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ሻݐሺݑ ൌ ሾ݇ሺݐሻ݁ሺݐሻሿ  නሾ݇ூሺ߬ሻ݁ሺ߬ሻሿ݀߬ 
݀ሾ݇ሺݐሻ݁ሺݐሻሿ

ݐ݀

௧



ൌ ሾ1 1 1ሿ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

ሾ݇ሺݐሻ݁ሺݐሻሿ

නሾ݇ூሺ߬ሻ݁ሺ߬ሻሿ݀߬

௧



݀ሾ݇ሺݐሻ݁ሺݐሻሿ

ݐ݀ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ൌ ߰. Γ൫݇ሺݐሻ݁ሺݐሻ, ݇ூሺ߬ሻ݁ሺ߬ሻ, ݇ሺݐሻ݁ሺݐሻ൯ 

(15)

where, 

ە
۔

ۓ
߰ ൌ ሾ1 1 1ሿ

߁ ൌ ݇ሺݐሻ݁ሺݐሻ නሾ݇ூሺ߬ሻ݁ሺ߬ሻሿ݀߬

௧



݀ሾ݇ሺݐሻ݁ሺݐሻሿ

ݐ݀

 (16)

The PID controller described by Eq. (15) is equivalent to: 

ሻݐሺݑ ൌ ሾ݇ሺݐሻ݁ሺݐሻሿ  නሾ݇ூሺ߬ሻ݁ሺ߬ሻሿ݀߬

௧




݀ሾ݇ሺݐሻ݁ሺݐሻሿ

ݐ݀
 

(17) 

ൌ ሾ݇
Δ݇ሺݐሻሿ݁ሺݐሻ  නሾ݇ூ

Δ݇ூሺ߬ሻሿ݁ሺ߬ሻ݀߬

௧




݀ሾ݇

Δ݇ሺݐሻሿ݁ሺݐሻ

ݐ݀
 

where, 

ቐ
݇ሺݐሻ ൌ ݇

  Δ݇ሺݐሻ
݇ூሺݐሻ ൌ ݇ூ

  Δ݇ூሺݐሻ
݇ሺݐሻ ൌ ݇

  Δ݇ሺݐሻ
 (18)

݇
, ݇ூ

 and ݇
  are system parameters and these time invariant constants are formerly adjusted for the 

PID controller. On the other hand, Δ݇ሺݐሻ, Δ݇ூሺݐሻ and Δ݇ሺݐሻ are time-varying parameters which can be 
adapted according to practical situations in real-time experiments. Therefore, it may be inferred that the 
adaptation of Δ݇ሺݐሻ, Δ݇ூሺݐሻ and Δ݇ሺݐሻ leads to the adaptation of ݇ሺݐሻ, ݇ூሺݐሻ and  ݇ሺݐሻ. 

In order to expand the adaptation of Δ݇ሺݐሻ,  Δ݇ூሺݐሻ and Δ݇ሺݐሻ,  Eq. (11) can be modified as 
follows: 

ሻݐሺݑ ൌ ݇
݁ሺݐሻ  ݇ூ

 න ݁ሺ߬ሻ݀߬  ݇
 ݀݁ሺݐሻ

ݐ݀

௧



 Δ݇ሺݐሻ݁ሺݐሻ  නΔ݇ூሺ߬ሻ

௧



݁ሺ߬ሻ݀߬ 

 


݀ሾΔ݇ሺݐሻ݁ሺݐሻሿ

ݐ݀
ൌ ሻݐሺݑ   ሻݐሺݑ∆

where, 

ە
ۖ
۔

ۖ
ۓ

ሻݐሺݑ ൌ ݇
݁ሺݐሻ  ݇ூ

 න

௧



݁ሺ߬ሻ݀߬  ݇
 ݀݁ሺݐሻ

ݐ݀

ሻݐሺݑ∆ ൌ ሻݐሻ݁ሺݐሺ݇߂  න݇߂ூሺ߬ሻ

௧



݁ሺ߬ሻ݀߬ 
݀ሾ݇߂ሺݐሻ݁ሺݐሻሿ

ݐ݀

 
 

 

(19) 
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(a)                                                                                           (b) 

Fig. 9. The proposed controller output values (a) Disturbance rejection (b) Tracking 

Table 4. PID parameters 

Parameters PID, AT1FPID and AIT2FPID 

݇ܲ
0  1.129 

ܫ݇
0 0.043 

ܦ݇
0  3.040 

There are 4 evaluation methods for the closed-loop transient response of the proposed control 
systems and also to make a precise comparison. Two of these methods deal with classic performance 
measuring criteria such as “Maximum overshoot” (%OS) and “Settling time” (Ts) and two others are also 
described as: 
(i) Integral absolute error (IAE): 

       IAE ൌ  |݁ሺݐሻ|
ஶ
 (23) ݐ݀

(ii) Integral time absolute error (ITAE): 

     ITAE ൌ  |ሻݐሺ݁|ݐ
ஶ
 (24) ݐ݀

The tracking performance of AIT2FPID, AT1FPID and the conventional PID controllers are 
illustrated in Fig. 10. The performance comparison using IAE and ITAE criteria for 200 s are depicted in 
Fig. 11. As it is obvious, tracking accuracy and controller error have both led to better results in 
AIT2FPID in comparison with AT1FPID and the conventional PID considerably according to Table 5. 
Furthermore, %OS and Ts are remarkably lower in the former method. 

Table 5. Performance of PID tuning techniques (Tracking 200 sec) 

Performance Criteria 
Controller type 

PID AT1FPID AIT2FPID 

%OS 15.70 9.78 8.92 

Ts 164 101 85 

IAE 29.05 27.25 26.79 

ITAE 640.13 498.32 436.38 
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Variations in the inflow temperature leading to reservoir temperature changes are represented by Eq. 
(25) [13]. 

ሻݏሺܪ   (25) ൌ
ଵ

ଶହ௦ାଵ
݁ିଷହ௦ 

 

 
Fig. 10. System response (normalized tank temperature) for set point tracking 

 
     (a)                                                                                       (b)  

Fig. 11. Tracking performance (a) IAEand (b) ITAE for conventional PID, T1FLS and IT2FLS tuning  

Likewise, the simulation results for disturbance rejection by using a step function are illustrated in 
Fig. 12. Capabilities of AIT2FPID for disturbance rejection in comparison with other methods can be 
easily inferred. Moreover, the endurance of unforeseen internal disturbances and data uncertainties is 
effectively better in AIT2FPID. 
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IAE and ITAE performance evaluation curves and the corresponding statistical investigations are 
shown in Fig. 13 and Table 6 to make an exact comparison between the controllers in terms of 
performance and error while performing disturbance rejection. 

 
Fig. 12. The Step input and load disturbance response of the plant 

 

 
(a)                                                                                             (b) 

Fig. 13. Step input and load disturbance performance (a) IAE and (b) ITAE for conventional 
 PID, T1FLS and IT2FLS tuning 

 
Table 6. The performance of PID tuning techniques (Disturbance rejection 200 sec) 

Performance Criteria 
Controller type 

PID AT1PID AIT2PID 

IAE 22.89 22.41 22.13 

ITAE 2128.45 2037.71 2002.04 

It is clear from the error and error derivative that type-2 fuzzy has much better adaptation for the 
adjustment of PID parameters. Therefore, employing type-2 fuzzy leads to better response of the closed-
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loop system and thus the tank temperature has been adjusted quickly while possessing better response 
characteristics. 

In order to assess the proposed control strategy in this study, the results are compared with other 

conventional control techniques performed on heat exchanger systems already and previously mentioned 

in the introduction like MPC and FLC. Figure 14 shows the simulation results for set point tracking and 

Fig. 15 also shows the disturbance rejection results. Based on the error reported for control strategies in 

Tables 7 and 8, AIT2FPID is obviously more promising than other methods. 

 

 
Fig. 14. System response (normalized tank temperature) for set point tracking 

 

 
Fig. 15. The Step input and load disturbance response of the plant 

Table 7. Performance comparison of AIT2PID, FLC and  MPC (Tracking 600 sec) 

Performance Criteria 
Controller type 

AIT2PID FLC MPC 
IAE 46.165 76.621 332.01 

ITAE 11027.49 19764.76 111620.72 
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Table 8. Performance comparison of AIT2PID, FLC and  MPC (Disturbance rejection 200 sec) 

Performance Criteria 
Controller type 

AIT2PID FLC MPC 

IAE 22.13 22.530 39.50 
ITAE 2002.04 2265.18 3962.91 

 
7. CONCLUSION 

 
The application of type-2 fuzzy sets for PID parameter adaptation is investigated in order to suggest a 
novel method for controlling the temperature of a heat exchanger system. Based on the results, the 
proposed method is efficient in terms of controller performance and disturbance rejection. Besides, the 
proposed method is able to accomplish parameter adaptation considering model complexities, 
uncertainties of the input data and also utilising type-2 fuzzy sets. The simulation results illustrate that this 
method has better performance for tracking the input signal resulting in response accuracy and a system 
reaction with smaller errors in comparison with AT1FPID, MPC, conventional FLC and conventional PID 
controllers. Furthermore, the selected controller is more proficient for harnessing the disturbances arising 
from inflow to the tank. In addition, the proposed method can be applied to other industrial processes with 
inherent uncertainties in the input data encountering complexities in order to perform multiple 
modifications leading to the enhancement of total efficiency. 
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