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Abstract– In this paper, the Quantitative Feedback Theory (QFT) is proposed to design a 
controller for feed drive of Virtual Computer Numerical Control (VCNC) systems. The designed 
robust QFT controller is also compared to two commonly used controller design methods, i.e. 
Fuzzy Control (FC) and Sliding Mode Control (SMC), for contour tracking problem. The position 
commands required for contour following task are evaluated by the Non-Uniform Rational B-
Spline (NURBS) curve interpolator with the S-shape feedrate profile for two contours, i.e. "heart" 
and "omega" as the case studies. After modeling the feed drive of the VCNC system, the robust 
QFT controller and also FC and SMC controllers are designed to achieve the allowable tolerance 
contour error. The simulation results for the "heart" and "omega" contour following tasks with the 
aforementioned controllers were analyzed and discussed. It is found that the designed QFT 
controller not only achieves the tight contour error but also yields better satisfactory performance, 
especially at the corners of the tool path, compared to the other controllers used in contour 
following applications in VCNC systems.          
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1. INTRODUCTION 
 

Since Bode’s work [1] was limited to gain variations only, Horowitz generalized and extended it to 

arbitrary variations of a process transfer function [2]. He characterized the model uncertainty by templates 

that are sets of amplitudes and phase for each frequency. Furthermore, a graphical design technique was 

introduced that was very useful to design feedback systems which were robust to disturbances. QFT is a 

phrase used to identify the design method Horowitz developed for designing robust control systems. QFT 

is a robust feedback control-system design technique which allows direct design to closed-loop robust 

performance and stability specifications. Some advantages of QFT in contrast with other robust control 

techniques are given in [3-7]: 

Trajectory following tasks using the QFT have been considered and implemented in several 

researches in recent years [7-10]. The main advantage of QFT is its robustness and stability that is against 

the other defects and allows for the development of a single controller to handle all possible plants defined 

by the space of uncertainty. Patil et al. [7] proposed a fractional-order proportional-integral (FOPI) 

controller via the QFT technique for a class of nonlinear systems. In their work, the performance of the 

designed FOPI controller was also compared with a traditional integer-order PID (IOPID) controller for an 

arbitrary trajectory as an input. The results presented in [7] showed that in the case of FOPI controller with 

the QFT technique there was no overshoot in the closed-loop response, whereas large overshoot was 
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observed in the case of IOPID controller. In [8], the QFT was used for designing controllers for a highly 

uncertain two link robot manipulator operated in the vertical plane carrying an uncertain payload. In that 

work, two controllers were designed and their effectiveness was analyzed based on the results obtained 

from the simulations and experiments. The first one was for tracking a square wave in the presence of 

plant input and plant output disturbances and the second one was for rejecting random white noise. To 

control nonlinear vehicle model at different work conditions with eight degrees of freedom, a robust 

controller based on QFT was used in [9]. In order to reveal the effectiveness of the designed controller, 

two manoeuvres were considered for the vehicle motions under different working schemes. The results 

presented in [9] showed that the designed QFT controller with the presence of different uncertainties was 

able to achieve the accurate desired responses. Amiri Moghadam et al. [10] proposed QFT to control a 

two-segment robot manipulator along the horizontal line and elliptical trajectories. In fact, the robust 

control QFT was applied to control the conjugated polymer actuator in their work. The results presented in 

[10] showed that the designed QFT controller had consistent and robust tracking performance.  

Accurate estimation of the contour error is one of the crucial factors in the contour following 

problems. In fact, several contour-error estimation algorithms that can be used in high speed contouring 

applications have been proposed [11-14]. Since producing in the shortest time and with the least cost are 

the main purposes of manufacturing technologies, virtual manufacturing systems provide a useful means 

for products to be manufactured without the need of physical testing on the shop floor [15]. In particular, 

Virtual Computer Numerical Control (VCNC) systems have an important role in manufacturing problems 

and contour error estimation with low cost.  

In this paper, the QFT controller is designed for the Non-Uniform Rational B-Spline (NURBS) 

contour following task in a VCNC system. Due to the fact that the performance of QFT controller has not 

yet been compared with the other controllers used in VCNCs, in this work, the designed robust QFT 

controller is also compared with two commonly used controllers in contour following tasks, i.e. Fuzzy 

Control (FC) and Sliding Mode Control (SMC). The rest of the paper is organized as follows: In Section 2, 

the VCNC motion control system, which includes the NURBS contouring commands module, the 

controller and the feed drive dynamics are investigated. In particular, the robust QFT controller design 

procedure is explained in this section. In Section 3, the simulation results are presented to demonstrate the 

feasibility of the proposed robust QFT controller for NURBS contour following task in the VCNC. Also, 

the obtained contouring performance using the designed robust QFT controller is compared with the 

contouring performance using the FC and SMC controllers in this section. Finally, Section 4 concludes the 

paper. 
 

2.  VIRTUAL CNC MOTION CONTROL SYSTEM 
 

Schematic diagram of a VCNC motion control system is shown in Fig. 1. According to Fig. 1, the VCNC 
which includes command generation module, controller and feed drive dynamics, is such a system 
comprising practical models in modelling the real CNC behaviour in assisting the development of a virtual 
machine tool structure [16].   

As shown in Fig. 1, using the designed desired trajectory and the given feedrate profile, the 
interpolator generates the desired position commands for each axis as the inputs of the system feed drives. 
The precision of the motion command generator and the designed controller ensure the contouring 
accuracy of a motion control system [17, 18]. Each part of the VCNC motion control system is described 
in the following sub-sections. 
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Fig. 1. Schematic diagram of a VCNC motion control system 

 
a) Feed drive model 
 

A typical feed drive of a VCNC system is shown in Fig. 2. The linear dynamic model of the feed 
drive includes the current amplifier, motor gain, inertia and viscous damping, as shown in Fig. 2. The 
position of the table can be expressed as follows in Laplace domain [19]: 

 1
( ) ( ) ( )g

l t a a d

r
X s K K U s T s

s Js B
 

                                       
 (1) 

where ua [V] is the control signal generated by the axis controller and it is applied to the current amplifier 
which has a gain of Ka [A/V]. Kt [Nm/A] is the motor torque constant. J [kg/m2] is the inertia of the rigid 
body motion of the table. B [kg/m2/s] is the system’s viscous damping and rg [mm/rad] is the transmission 
gain. The uncertain parameters can be considered as , , ,  and g a tB r K K  in the feed drive model of a 
VCNC system. Td [Nm] is the external disturbance torque and consists of non-linear guide way friction Tf 
and cutting forces Tc acting on the motor shaft as d f cT T T  .  

 
Fig. 2. Feed drive model of a VCNC system [19]  

b) Trajectory command generation module 
 

Based on the specified feedrate along a tool path designed via a parametric curve, the trajectory 
command generation module in a VCNC evaluates the curve parameters corresponding to each sampling 
period and consequently generates the position commands for the drive axes at each sampling period T. 
The NURBS curve as the designed tool path and the NURBS interpolator with the S-curve feedrate profile 
have been used in this paper. 

In the following, the NURBS curves and their interpolation using the second-order Taylor’s 
expansion are briefly presented. 

1. Review on NURBS curves 

The NURBS curve of degree p, defined by given n+1 control points 0 1, , , nP P P with corresponding 
weights 0 1, , , nw w w  and the knot vector { }0 1, , , mU u u u=   is: 
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where , ( )k pR u  and , ( )k pN u  are the Rational B-spline and basis functions of degree p, respectively, which 
are described as follows [20, 21]: 
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The m-th derivative formula of a NURBS curve defined by equation (2) with respect to the parameter 
u is 

( ) ( )
,

0

( ) ( )
n

m m
i p i

i

C u R u P


                                                        (5) 

 
where ( )

, ( )m
i pR u  is the m-th derivatives of , ( )i pR u . 

Further details on computing the m-th derivative of a NURBS curve, i.e. ( ) ( )mC u , specially the first- 
and the second-order derivatives of a NURBS curve can be found in [20-22]. 

2. NURBS interpolation using the second-order Taylor’s expansion 
After designing a contour via the NURBS curve as Eq. (2), in order to implement the contour 

following task, the position commands along the NURBS curve are found using the interpolation 
technique. To this end, at first the feedrate along the NURBS curve is expressed as 

( )
ds ds du

V t
dt du dt

                                                            (6) 

where s is the arc length. Thus we have 

22

( )

( )( ) yx

du V t

dt dC udC u

du du


      

   

                                           (7) 

 
Where Cx(u) and Cy(u) are the x and y components of a point on the NURBS curve corresponding to the 
parameters u. The closed form solution of Eq. (7) for the NURBS parameter u does not exist in general. 
To cope with this problem, the NURBS interpolator is executed using the second-order Taylor’s 
expansion method around the t=kT instant as: 

22

1 22
k k

k k

du d uT
u u T

dt dt                                                        (8) 

 
where T is the sampling period.  

The first- and the second- derivatives of u(t) can be expressed as follows: 
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In the above equations, the first- and second- derivatives of the NURBS curve C(u) can be calculated 
using equation (5). Finally, after obtaining the parameter values from equations (8)-(10), the position 
commands are calculated by substituting the parameter values into equation (2) at each sampling period.  

In order to obtain smooth motion transition between different phases along the path and also ensure 
continuity of both the feed acceleration/deceleration and feed jerk, the S-curve profiles are preferred rather 
than the linear one [23]. The cubic time-dependent feedrate used in [22,24] has been adopted for the S-
curve feedrate profile in this paper. This feedrate profile consists of three phases of motion as acceleration, 
fixed feedrate and deceleration. Further details on constructing the feedrate profile can be found in [22-
25].  

c) The proposed robust QFT controller for contour following task 
 

This section presents the QFT controller design procedure for each axis of the VCNC system. The 
controller designing steps are just illustrated for the x-axis and the controller design for the y-axis has the 
same procedure. 

Figure 3 shows the basic structure of a feedback system with two degrees of freedom. As shown in 
Fig. 3, P(s) is uncertain plant that belongs to a set  P( ) P( , );s s    , where  is the vector of 
uncertain parameters, which takes the values in  . Also, G(s) is the fixed structure feedback controller 
and F(s) is the pre-filter. In 2-dof system, it is required to design pre-filter F(s) and compensator G(s) for a 
plant P(s). 

The uncertain model of the feed drive of the VCNC between the input voltage and output position of 
the table can be considered as shown below:  

 1 1
( ) ( ) ( ) ,  ( ) ( ) ( )g g

l t ax a dx l t ay a dy
x x y y

r r
X s K K U s T s Y s K K U s T s

s J s B s J s B
      

 

where the uncertain model's parameters are considered as , , ,  and g a tB r K K . These parameters belong to 
the following domains for the VCNC system performed in this paper. 

     
     2 2

1.4,1.73  mm / rad, 0.42,0.52 Nm / A, 5.71,7.07 A / V,

6.67,8.26 A / V, 0.014,0.026 Kgm / s, 0.02,0.037 Kgm / s

g t ax

ay x y

r K K

K B B

  

  
 

 
Fig. 3. Structure of a feedback system 

 
Prior to the QFT controller design, the plant templates at specified frequencies that pictorially 

describe the region of plant parameter uncertainty on the Nichols Chart (NC) should be generated [26, 27] 
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. To this end, suitable controller and pre-filter must be synthesized such that the closed-loop system is 
stable and can track the desired position commands as the inputs. Therefore, the following specifications 
are considered in QFT controller for the VCNC system.  

 Robust stability    
For a lower gain margin of at least 5.26 dB  and a lower phase margin of at least 49.25 deg , the 

robust stability specification is determined as [28, 29]: 

( ) ( )
1.2

1 ( ) ( )

P j G j

P j G j

  
 

 


                                               (11) 

which corresponds to the lower gain margin of 
1

1 1.833 5.26 dBMK


    and the lower phase 
margin of 1 2180 cos (0.5 / 1) 49.25 degM     . 

 Robust tracking performance   
The tracking specifications for the closed-loop performance are given in the form of upper and lower 

bounds in the frequency domain (overshoot =2% and the settling time =0.05 s). Usually, based on the 
simple second-order models to represent appropriate under damped and over damped closed-loop system, 
the following is stated: 

( ) ( )
( ) ( ) ( )

1 ( ) ( )

P j G j
a j F j b j

P j G j

   
 

 


                                     (12) 

where, a (jω) and b(jω) are the lower and upper bound, respectively and 

are
2 2

40000 65796
( ) ,  ( )

400 40000 400 65796
a j b j

s s s s
  

   
 for the VCNC system. 

At the first step of QFT controller design we must define the plant uncertainty (template) on the 
Nichols Chart, which is shown in Fig. 4. The next step of QFT controller design is the generation of 
stability contour margin and tracking bounds on the Nichols Chart. Given the plant templates, QFT 
converts closed-loop magnitude specifications into magnitude and phase constraints on a nominal open 
loop function 0( ) ( ) ( )L s G s P s [30]. These constraints are called QFT bounds. Equation (11) established 
a circle in Nichols chart that also defines phase margin and gain margin. Robust margin bounds (U-
contours) are depicted in Fig. 5. The boundary of this region is referred to as the stability bound. For the 
tracking bounds, the solution requires that the response lie within the upper and lower tracking 
specification as in equation (12). Robust tracking bounds are shown in Fig. 6. Also, the intersection of the 
bounds or the robust performance bound is shown in Fig. 7. By considering the frequency constraints and 
the nominal loop of the system, one can design the controller on the NC by adding poles and zeros and 
using the QFT toolbox in MATLAB software, so that the open loop transfer function exactly lies on its 
robust performance bounds and does not penetrate the U-contour at all frequency values ( i ). The 
designer performs loop shaping process, which tunes the parameters of controller functions (G(s)) until the 
optimal controller with the minimum high frequency gain is reached without violating the frequency 
constraints.  

Finally, the QFT design can be completed with a pre-filter (F(s)) design which guarantees the 
satisfaction of tracking specification [31]. In the case of tracking conditions, a shaping on the Bode 
diagram is used. The loop and the pre-filter shaping of the open loop transfer function for the x-axis are 
presented in Figs. 8 and 9, respectively.  

It can be seen that the design satisfies all robust stability margins and the performance specifications. 
The respected controller and the pre-filter for x- and y- axes are found as follows: 
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2

61.21 8.72
( ) , ( )

0.001s +0.187s+8.7

22.36

0.0001 1.326 2

s

s
G s F s 




 

Once the controller design is finished, the frequency responses of the closed-loop system at several 
frequencies and time domain simulations must be checked to confirm whether it satisfies the design 
specifications. Figure 10 illustrates robust stability in frequency domain for the x-axis. Dotted line is the 
desired stability value (μ=1.2=1.58 dB) and the continuous line is the system response which is below the 
dotted line. Also, Fig. 11 shows the time-domain closed-loop response of the associated linear system of 
VCNC for various plant parameters. According to Figs. 10 and 11, the required robust stability condition 
for the designed QFT used in the VCNC system is fulfilled.  

The performance of the designed QFT controller in the contour following task is also compared with 
the performances obtained from Fuzzy Control (FC) and Sliding Mode Control (SMC) methods in this 
paper. The rule bases of the fuzzy controllers for the x and the y axes have also been selected as given in 
Table 1. The control parameters for the designed SMC are also given in Table 2. 

 
Table 1. Rule base of the fuzzy controllers used in the  

simulations for both x- and y- axes 

E
rr

or
 C

ha
ng

e 

Error 
 NL NM NS Z PS PM PL 

NL NL NL NL NL NM NS Z
NM NL NL NL NM NS Z PS 
NS NL NL NM NS Z PS PM 
Z NL NM NS Z PS PM PL 
PS NM NS Z PS PM PL PL 
PM NS Z PS PM PL PL PL
PL Z PS PM PL PL PL PL

 
Table 2. The control parameters for the SMC used in the simulations [19, 32] 

SMC parameters x-axis y-axis Unit 
Sliding surface bandwidth,   200 200 rad/s 

Feedback gain, Ks 0.3 0.3 Vs/mm 
Disturbance adaptation gain,   30 30 V/mm 

Lower external disturbance limit, d


 -0.32 -0.54 - 

Upper external disturbance limit, d


 0.43 0.58 - 

 
3. SIMULATION RESULTS 

 
The x- and the y-axes feed drive parameters used in simulations are given in Table 3. The S-curve feedrate 
profile with maximum of 100 mm/s and acceleration / deceleration time of 0.12 s is selected for all 
contour following tasks. In addition, the sampling period T for the NURBS interpolation is 0.001s in all 
simulations. 

Table 3. The x- and the y-axes feed drive parameters used  in the simulations [19, 32] 

Feed drive parameters x-axis y-axis Unit
Total reflected inertia, J 0.0077736 0.0098109 Kgm2 

Saturation limits -5,+5 -5,+5 V 
Backlash, Db 0.003 0.003 mm 

Static friction, 
stat

T
  2.6256, -1.8672 2.7658, -2.4520 Nm 

Coulomb friction, 
coul

T
  2.1529, -1.4730 2.5228, -2.3887 Nm 
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a) Case studies 

In order to evaluate the performance of the designed controllers, i.e. the QFT, the FC and the SMC in 
the contour following task, these three controllers were realized for two NURBS curves, i.e. the "heart" 
and the "omega" shapes, as case studies. 

The NURBS parameters for the "heart" shape are: 

 

[0, 0, -20, 40, 90, 40, -20, 0, 0]
Control points:

[0, 10, 50, 50, 0,  -50, -50, -10, 0]

knot vector = 0,0,0,0, 1, 2, 3, 4, 5, 6, 6, 6, 6 , weights = [1, 1, 1.7, 1, 4, 1, 1.7, 1, 1], p=3

x

y


   

while the parameters for constructing the  "omega" shape via the NURBS curve are selected as follows: 

 

[0, 0, 6, 4, 1, 5, 11, 15, 12, 10, 16, 16]
Control points:

[1, 0, 0, 2, 11, 16, 16, 11, 2, 0, 0, 1]

knot vector = 0, 0, 0, 0.025, 0.1, 0.2, 0.4, 0.5,0.6, 0.8, 0.9, 0.975, 1, 1, 1

weights = [1, 1, 1,

x

y


 

 1, 1, 1, 1, 1, 1, 1, 1, 1], p=2.  

In the following, the contour following results for the aforementioned case studies are presented.   

 
Fig. 4. Boundary of the plant template on the NC 

 

 
Fig. 5. Robust margins on the NC 
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Fig. 6. Robust tracking on the NC 

 

 
Fig. 7. Intersection of bounds on the NC 

 

 
Fig. 8. Loop-shaping in the NC 
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Fig. 9. Pre-filter shaping in the frequency domain 

 

 
Fig. 10. Robust stability in the frequency domain 

 

 
Fig. 11. Closed-loop response of the VCNC system for various plant parameters 
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b) "Heart" and "omega" contour following results 

The "heart" contouring starts from the origin and moves in a clockwise direction, while for the case 
of “omega" contouring, the tool moves from the left to the right side along the "omega".  

The simulation results for contour following tasks along the "heart" and the "omega" shapes are given 
in Figs. 12 and 13, respectively. According to Figs. 12 and 13, it can be observed that the actual 
trajectories match the desired one closely by employing the three designed controllers, i.e. QFT, FC and 
SMC. 
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Fig. 12. Contour following performance along the "heart" shaped path 
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Fig. 13. Contour following performance along the "omega" shaped path 

 
Figure 14 shows the contour error profiles for the "heart" contour following with three designed 

controllers. While the contour error profiles for the case of "omega" contour following using these 

controllers are shown in Fig. 15. According to Figs. 14 and 15, the contour error for the "heart" and 

"omega" contouring is increased in the vicinity of the turning points shown in the insets of Figs. 12 and 

13.  
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Fig. 14. Contour error of the designed controllers in the "heart" contour following task 
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Fig. 15. Contour error of the designed controllers in the "omega" contour following task 

 
For the case of "heart" contour following task, as can be seen in Fig. 14, utilizing the QFT and SMC 

controllers yields the lower contour error at the corners of the "heart" as the tool path compared with the 
FC method. The maximum error using the SMC controller occurred at the upper corner of the "heart" is 
13.16 µm and the maximum error with the QFT controller is 10.14 µm which occurred at the right-hand 
side corner of the "heart". However, the "heart" contouring using the FC method yields the contour error 
more than 30 µm at the turning points and at the end of the tool path as well. 

For the case of "omega" contour following task, as can be seen from Fig. 15, the maximum contour 
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error using the SMC method occurred at the right corner of the "omega" is 28.22 µm and the maximum 
contour errors using the QFT and FC methods are 27.33 µm and 44.19 µm, respectively, which occur at 
the left corner of the "omega". Furthermore, the "omega" contouring using the QFT controller not only 
indicates that the QFT method has least contour error at the corners but also yields the least variation of 
the contour error at the smooth part between two corners or turning points. Table 4 summarizes the 
simulation results of the "heart" and "omega" contour following task with three different controllers. The 
average percentage of contour errors along the "heart" and "omega" paths are also presented in Table 4 for 
each controller. According to Table 4, the average percentage of the normal distance between the actual 
tool path and the reference "heart" path using the FC method is 18.54%, which is much more than the 
other controllers. Also, the average percentage of contouring error along the "omega" path utilizing the 
designed QFT controller is 6.91%, while the average percentage of contouring error using the SMC and 
FC methods are 9.46% and 17.82%, respectively.  

Table 4. Simulation results for the contour following tasks with the designed controllers 

Controller 
design method 

Maximum contour error (µm) Average contour error (%) 

"heart" contour 
following task 

"omega" 
contour 

following task 

"heart" contour 
following task 

"omega" 
contour 

following task 

FC 35.5 44.19 18.54 17.82 

SMC 13.16 28.22 3.25 9.46 

QFT 10.14 27.33 3.34 6.91 

 
4. CONCLUSION 

In this paper, design of a robust Quantitative Feedback Theory (QFT) controller for the feed drive of 
Virtual Computer Numerical Control (VCNC) systems in contour tracking applications was investigated. 
Also, the performance of the designed robust QFT controller was compared to the performance of fuzzy 
controller (FC) and sliding mode controller (SMC) for two contour following tasks as the case studies. 
The position commands required for the contour following tasks were evaluated by the NURBS curve 
interpolator with the S-curve feedrate planning profile using the second-order Taylor’s expansion for two 
NURBS curves, i.e. "heart" and "omega" shaped path. The simulation results demonstrated that the 
proposed QFT controller is feasible for tracking the parametric curves represented in the NURBS form. 
Moreover, it is able to achieve the satisfactory contouring performance, which results in the actual 
trajectory closely matching the desired path. In particular, utilizing the QFT controller yields the lower 
contour error at the corners of the tool path compared to the other controller design methods used in 
VCNC for variable feedrate control.  
 

REFERENCES 
 
1. Bode, H. W. (1945). Network analysis and feedback amplifier design. Princeton, NJ: Van Nostrand. 

2. Horowitz, I. M. (1963). Synthesis of feedback systems. New York: Academic Press. 

3. Horowitz, I. M. (1992). Quantitative feedback design theory (QFT). 1. 4470 Grinnel Ave., Boulder, Colorado 

80303, USA: QFT Publications. 

4. Houpis, C. H. & Rasmussen, S. J. (1999). Quantitative feedback theory fundamentals and application. New 

York: Marcel Dekher, Inc. 

5. Sobhani, M. & Rafeeyan, M. (2000). Robust controller design for multivariable nonlinear uncertain systems. 

Iranian Journal of science and Technology, Transaction B: Engineering, Vol. 24, No. 3, pp. 345-356.  



J. Jahanpour et al. 
 

IJST, Transactions of Mechanical Engineering, Volume 39, Number M1                                                                       April 2015 

144

6. Honari Torshizi, M., Jahanpour, J. & Gharib, M. R. (2011). A new controlling method for trms based on robust 

approach. 5th International Symposium on Advances in Science & Technology (5th SASTech), Mashhad, Iran. 

7. Patil, M. D., Nataraj, P. S. V. & Vyawahare, V. A. (2012). Automated design of fractional PI QFT controller 

using interval constraint satisfaction technique (ICST). Nonlinear Dynamics, Vol. 69, pp. 1405–22. 

8. Chatlatanagulchai, W., Srinangyam, C. & Siwakosit, W. (2008). Trajectory control of a two-link robot 

manipulator carrying uncertain payload using quantitative feedback theory. Journal of Research in Engineering 

and Technology. Vol. 5, No. 1, pp. 45-71. 

9. Mashadi, B., Goharimanesh, M., Majidi, M. & Gharib, M. R. (2010). Quantitative Feedback Theory controller 

design for vehicle stability enhancement. Proceedings of the ASME 2010 10th Biennial Conferences on 

Engineering Systems Design and Analysis (ESDA2010); 2010 July 12-14; Istanbul, Turkey 

10. Amiri Moghadam, A. A., Moavenian, M. & Toussi, H. E. (2011). Modelling and robust control of a soft robot 

based on conjugated polymer actuators. International Journal of Modelling Identification and Control. Vol. 14, 

No. 3, pp. 216–26. 

11. Cheng, M. Y., Su, K. H. & Wang, S. F. (2009). Contour error reduction for free-form contour following tasks of 

biaxial motion control systems. Robotics and Computer-Integrated Manufacturing, Vol. 25, No. 2, pp. 323–33. 

12. Erkorkmaz, K., Yeung, C. H. & Altintas, Y. (2006). Virtual CNC System. Part II. High speed contouring 

application. International Journal of Machine Tools and Manufacture. Vol. 46, No. 10, pp. 1124-38. 

13. Cheng, M. Y. & Lee, C. C. (2007). Motion controller design for contour following tasks based on real-time 

contour error estimation. IEEE T Ind. Electron., Vol. 54, No. 3, pp. 1686–95. 

14. Erkorkmaz, K. & Altintas, Y. (1998). High speed contouring control algorithm for CNC machine tools. 

Proceedings of ASME Dynamic Sys Control Division, IMECE’98, DSC-64, pp. 463–469. 

15. Altintas, Y., Brecher, C., Weck, M. & Witt, S. (2005). Virtual machine tool. Annals of CIRP, Vol. 54, No. 2, pp. 

651-73. 

16. AbdulKadir, A., Xu, X. & Hammerle, E. (2011). Virtual machine tools and virtual machining-A technological 

review. Robotics and Computer-Integrated Manufacturing, Vol. 27, pp. 494–508. 

17. Erkorkmaz, K. & Altintas, Y. (2001). High speed CNC system design. Part I:jerk limited trajectory generation 

and quintic spline interpolation. International Journal of Machine Tools & Manufacture. Vol. 41, pp. 1323-45. 

18. Su, K. H. (2008). Study on contour error control in parametric free-form contour following. Taiwan, R.O.C.: 

National Cheng Kung University. 

19. Yeung, C. H., Altintas, Y. & Erkorkmaz, K. (2006). Virtual CNC system. Part I. System architecture. 

International Journal of Machine Tools and Manufacture. Vol. 46, pp. 1107–23. 

20. Piegl, L. A. & Tiller, W. (1995). The NURBS Book. New York: Springer. 

21. Shene, C. K. (2011). Introduction to computing with geometry notes. [Internet] Houghton, Michigan: Michigan 

Technological University. Available from: http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/;  

[updated 2011 May 4]. 

22. Jahanpour, J., Tsai, M. C. & Cheng, M. Y. (2010). High speed contouring control with NURBS-based C2 PH 

spline curves. International Journal of Advanced Manufacturing Technology, Vol. 49, Nos. 5-8, PP. 663-74. 

23. Tsai, Y. F., Farouki, R. T. & Feldman, B. (2001). Performance analysis of CNC interpolators for time-dependent 

feed rates along PH curves. Computer Aided Geometric Design. Vol. 18, No. 3, pp. 245-65. 

24. Jahanpour, J. & Ghadirifar, A. (2014). The improved NURBS-based C2 PH spline curve contour following task 

with PDFF controller. International Journal of Advanced Manufacturing Technology. Vol. 70, pp. 995-1007. 

25. Jahanpour, J. (2012). High speed contouring enhanced with C2 PH quintic spline curves. Scientia Iranica B, Vol. 

19, No. 2, pp. 311–31. 

26. Amiri Moghadam, A. A., Gharib, M., Moavenian, M. & Torabi, K. (2009). Modelling and control of a SCARA 

robot using quantitative feedback theory. Proc IMechE Part I: Journal of Systems and Control Engineering, 

Vol. 223, pp. 919–28. 



VCNC contour following tasks using… 
 

April 2015                                                                       IJST, Transactions of Mechanical Engineering, Volume 39, Number M1   

145

27. Nataraj, P. S. V. (2002). Computation of QFT bounds for robust tracking specifications. Automatica, Vol. 38, 

pp. 327-34. 

28. Satpati, B., Koley, C. & Datta, S. (2014). Robust PID controller design using PSO enabled automated QFT 

approach for first order lag system with minimal dead time. Systems Science & Control Engineering. DOI: 

10.1080/21642583.2014.912570. 

29. Alavi, S. M. M., Izadi-Zamanabadi, R. & Hayes, M. J. (2007). On the generation of a robust residual for closed-

loop control systems that exhibit sensor faults. IET Proc. Irish Signals and Systems Conference N., Ireland, pp. 

59–66. 

30. Borghesani, C., Chait, Y. & Yaniv, O. (1993). QFT frequency domain control design toolbox; for use with 

MATLAB. Terasoft, Inc.  

31. Yaniv, O. (1998). Quantitative feedback design of linear and non-linear control systems. Kluwer Academic 

Publication, Norwell, Massachusetts. 

32. Altintas, Y., Erkorkmaz, K. & Zhu, W. H. (2000). Sliding mode controller design for high speed drives. Annals 

of CIRP, Vol. 49, No. 1, pp. 265–70. 
  


