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Abstract– Three-dimensional simulations are presented on the motion of a neutrally buoyant drop 
between two parallel plates at a finite-Reynolds-number in plane Poiseuille flow, under conditions 
of negligible gravitational force. The full Navier-Stokes equations are solved by a finite 
difference/front tracking method that allows a fully deformable interface between the drop and the 
suspending medium and the inclusion of the surface tension. In the limit of a small Reynolds 
number ( 1< ), the direction of motion of the drop depends on the ratio of the viscosity of the drop 
fluid to the viscosity of the ambient fluid. At finite Reynolds numbers, the drop migrates to an 
equilibrium lateral position about halfway between the wall and the centerline (the Segre-
Silberberg effect). Results are presented over a range of capillary number, Reynolds number, 
viscosity ratio and drop size. As the Reynolds number increases or capillary number or viscosity 
ratio decreases, the equilibrium position moves closer to the wall. The drop velocity is observed to 
increase with increasing capillary number and viscosity ratio, but decreases with increasing 
Reynolds number. The drops are more deformed with increasing the capillary number or viscosity 
ratio. The drop deformation increases slightly with increasing Reynolds number at constant 
capillary number. The equilibrium position of the three-dimensional drop is close to that predicted 
by two-dimensional simulations. But the translational velocities do not agree quantitatively with 
two-dimensional simulations.           
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1. INTRODUCTION 
 

Motion of liquid drops and cells through narrow channels and tubes has been a matter of interest for many 
years and there has been a considerable interest in doing research in this area. From a practical point of 
view, the importance of this subject stems from many applications such as blood flow through blood 
vessels, the recovery of oil, the combustion of fuel sprays and emulsion transport through industrial ducts. 
In the present study, the motion of a three-dimensional deformable drop in a plane Poiseuille flow 
between two infinite parallel plates is studied by numerical simulation of the Navier-Stokes equations. 
Multiphase flow researchers have simulated the full time-dependent Navier-Stokes equations, but their 
computational modeling is limited to relatively simple systems where considerable simplifications are 
made in order to make simulations feasible. These approximations can be put in three categories: potential 
flow models for high Reynolds number flows, Stokes flow models for low Reynolds number flows, and 
point particle models for dilute intermediate Reynolds number flows. In contrast, the present study focuses 
on the migration of a three-dimensional drop at finite Reynolds numbers. The migration of neutrally 
buoyant solid particles in pipe flow at a finite Reynolds number was first observed by Segre & Silberberg 
[1, 2]. Their experimental studies showed that a rigid sphere is subject to radial forces which tend to carry 
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it to a certain equilibrium position at about 0.6 tube radii from the axis. Experimental studies by Karnis, 
Goldsmith & Mason [3, 4] showed that drops suspended in pipe flows could also exhibit the Segre-
Silberberg effect. While experiments of Goldsmith & Mason used mostly a single drop and dilute 
suspensions, Kowalewski [5] conducted experiments on the concentrated suspension of drops and 
measured the concentration and velocity profiles of droplet suspensions flowing through a tube.  

Theoretical studies were based on the solution of Navier-Stokes equations using perturbation 
methods. Ho & Leal [6] studied the inertia-induced lateral migration of a neutrally buoyant rigid sphere in 
a Newtonian fluid and indicated that the equilibrium position is about 6.0 of the channel half-width from 
the centerline for Poiseuille flow. Richardson [7] considered the behavior of a two-dimensional inviscid 
bubble in Stokes flow and observed that when surface tension effects are large, the cross-section of the 
bubble is circular.            

Several numerical methods have been used in the past to study the behavior of multiphase systems in 
the presence of solid boundaries. These numerical methods included volume-of-fluid, Lattice-Boltzmann, 
finite difference, finite element and boundary-integral methods. For example, Griggs, Zinchenko & Davis 
[8] used a boundary-integral algorithm to study the motion of a three-dimensional drop between two 
parallel plates in a low-Reynolds-number Poiseuille flow and found that when deformable drops are 
initially placed off the centerline of the flow, the drop migrates towards the channel center. Janssen & 
Anderson [9] used this algorithm and modified the Green’s functions to account for the effect of the walls 
for non-unity viscosity ratio systems. Zhou & Pozrikidis [10] simulated the pressure-driven flow of a 
periodic suspension of drops and showed that when the viscosity of the drops is assumed to be equal to 
that of the suspending fluid, the drops migrate towards the centerline of the channel. Talaie, Fathikalajahi 
& Taheri [11] used a three-dimensional dispersion model to investigate the effect of droplet size 
distribution for the prediction of liquid droplet dispersion in a venturi type scrubber. Coulliette & 
Pozrikidis [12] simulated the transient motion of a periodic file of three-dimensional drops in a cylindrical 
tube by boundary-integral method. It was found that when the capillary number is sufficiently small, the 
drops deform from their initial spherical shape as they migrate towards the centerline of the flow, and then 
approach a steady shape after a preliminary stage of rapid deformation. Feng, Ho & Joseph [13, 14] also 
conducted a two-dimensional finite element simulation of the motion of a solid particle in a Couette and a 
Poiseuille flow at finite Reynolds numbers. They observed that a neutrally buoyant particle exhibits the 
Segre-Silberberg effect in a Poiseuille flow. Mortazavi & Tryggvasson [15] used a finite-difference/front 
tracking method for numerical simulation of the motion of two-dimensional drops suspended in a 
pressure-driven channel flow at finite Reynolds numbers. They observed that in the limit of a small 
Reynolds number, the motion of the drop depends strongly on the viscosity ratio. At a higher Reynolds 
number, the drop moves to an equilibrium position about halfway between the centerline and the wall or it 
undergoes oscillatory motion.   

While the numerous studies mentioned above constitute considerable progress towards understanding 
the low-Reynolds-number motion of drops and bubbles in channels, some important unresolved issues and 
computational challenges still remain. In particular, there is a need for a three-dimensional systematic 
assessment of the role of drop deformation on the migration of a deformable drop between two parallel 
plates at finite Reynolds numbers. Thus, the main goal of the current effort is to employ the finite 
difference/front tracking method to a three-dimensional neutrally buoyant drop between two parallel plates 
at finite Reynolds numbers. The simulations are performed to study the effects of capillary number, 
Reynolds number, viscosity ratio and drop size on the migration of the drop within the channel. Many of 
the features observed in the simulations are qualitatively in agreement with the experimental and 
numerical observations, and, in particular, with the simulations presented by Mortazavi & Tryggvason 
[15] for a two-dimensional deformable drop. 
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2. GOVERNING EQUATIONS AND NUMERICAL METHOD 
 

a) Problem setup 
 

The geometry of the flow is shown in Fig. 1. The motion of a drop is studied in a channel that is bounded 
by two flat plates in the z direction. The height and length of the channel are H . To decrease the 
computation time, the depth of the channel in the y-direction is taken to be H5.0 . In absence of the drop, 
the undisturbed flow is driven by a constant pressure gradient (Mortazavi & Tryggvason [15]): 

 
                                                          ppp o ′∇+∇=∇                                                             (1) 

  
where op∇  is the externally specified pressure gradient and p′∇  is the perturbation pressure gradient to 
be computed as part of the solution. Gravity is neglected and buoyancy effects are absent.  

 

 
Fig. 1. The geometry for the simulation of a drop in a channel 

 
b) Boundary conditions 

 
The boundary condition on the plates is the no-slip condition. The domain is periodic in the x- and y-

directions. Normal stresses show a jump across the interface by surface tension and tangential stresses are 
continuous on the surface of the drop. 

 
c) Dimensionless parameters  

 
The governing non-dimensional numbers are the ratio of the viscosity of the drop fluid to the 

suspending medium oi μμλ /= , the density ratio oi ρρα /= , and the ratio of the radius of the drop to the 
height of the channel Ha /=ζ . The viscosity and density of the drop liquid are denoted by iμ  and iρ , 
respectively, and the suspending fluid has viscosity oμ  and density oρ . The bulk Reynolds number is 
defined in terms of the undisturbed channel centerline velocity )( cU  and the channel height, as 

ocob HU μρ /Re = . A Reynolds number based on the centerline velocity and the drop diameter (d) is 
defined by ocod dU μρ /Re = . A particle Reynolds number can be defined as HaU cp μρ /Re 2= . The 
capillary number, σμ /ocUCa = , describes the ratio of the viscous stress to the interfacial tension. Non-
dimensional time is defined by HtUc /=τ .    

 
d) Numerical method  

 
One of the important topics that has been considered by fluid mechanics researchers is flows with 

interfaces. Different numerical methods are used and developed for simulating these flows. These methods 
can be divided into two groups, depending on the type of grids used: moving grid and fixed grid. Two 
important approaches of fixed-grid methods, namely the volume-of-fluid (VOF) and level-set approaches, 
are among the most commonly used methods. The volume-of-fluid method uses a marker function. The 
main difficulty in using VOF method has been the maintenance of a sharp boundary between the different 
fluids and the computation of the surface tension. The level-set method defines the interface by a level-set 
functionφ , but this approach has some difficulties in preserving the mass conservation.  Another method 
presented in this paper is the finite difference/front tracking method which improved the disadvantages of 
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the previous methods. This approach was described in detail by Unverdi & Tryggvason [16,17] and only a 
brief outline is given here. The present computations are based on an improved implementation of the 
front tracking method at finite Reynolds numbers that include convective terms. The numerical technique 
is based on a direct discretization of the Navier-Stokes equation. In conservative form it is: 

 

             (2)   
 

where, u is the velocity, P is the pressure, and ρ  and μ  are the discontinuous density and viscosity 
fields, respectively. σ  is the surface tension coefficient, f is a body force, and surface forces are added at 
the interface. The term βδ  is a two- or three-dimensional δ function constructed by repeated 
multiplication of one-dimensional δ functions. The dimension is denoted by 2=β  or 3, κ is the 
curvature for two-dimensional flow and twice the mean curvature for three-dimensional flows, n is a unit 
vector normal to the front, x is the point at which the equation is evaluated, and x′  is a Lagrangian 
representation of the interface. 

This equation is solved by a second-order projection method using centred differences on a fixed 
regular, staggered grid. Both the drop and the ambient fluid are taken to be incompressible, so the velocity 
field is divergence free (Tryggvason et al. [18]): 

 
                                                            0=⋅∇ u                                                                               (3) 

 
Equation (3), when combined with the momentum equation, leads to a non-separable elliptic equation for 
the pressure. If the density is constant, the elliptic pressure equation is solved by fast Poisson solver 
(FISHPACK), but when the density of the drop is different from the suspending fluid, the equation is 
solved by a multigrid method (Adams [19]). 

Equations of state for the density and the viscosity are 
 

                               0=
Dt
Dρ        ,      0=

Dt
Dμ                                                                  (4) 

 
where, DtD /  is the material derivative, and equation (4) simply states that the density and the viscosity of 
each fluid remain constant. As the drops move, the density and the viscosity need to be updated. This is 
done by solving a Poisson equation for an indicator function )(xI  such that (Unverdi & Tryggvason [17]): 

 
( ) ( ) ( )xIx oio ρρρρ −+=                                                                 (5)   

 
( ) ( ) ( )xIx oio μμμμ −+=                                                                  (6) 

 
An indicator function that is 1 inside the drop and 0 in the outer fluid is constructed from the known 

position of the interface. In two-dimensional flow: 
 

( ) ( )∫= dsrg
r

nryxI  . 
2
1, 2π

                                                                 (7)    

 
where ( ) 22

1 δrerg −−= , and δ is a smoothness parameter. 
The singularities at the front (density and viscosity gradients and surface tension) are approximated 

on the fixed grid by smooth functions with a compact support.  
 

1. The structure of the front: In computations of flow containing more than one phase, the governing 
equations are solved on a fixed Eulerian grid, and the interface is tracked in a Lagrangian manner by a set 
of marker points (front) (Fig. 2). The front is represented by separate computational points that are moved 
by interpolating their velocity from the grid. These points are connected by triangular elements to form a 
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front that is used to keep the density and viscosity stratification sharp and to calculate surface tension. At 
each time step, information must be passed between the front and the stationary grid. This is done by a 
method similar to the one discussed by Unverdi & Tryggvason [16]. 

 

 
Fig. 2. The Eulerian and Lagrangian grids. From Doddi & Bagchi [20], with permission 

 
2. Computing surface tension: The surface tension force is computed from the geometry of the interface 
and distributed to the grid in the same manner as the density jump. Curvature is very sensitive to minor 
irregularity in the interface shape, and it is difficult to achieve accuracy and robustness at the same time. 
However, the surface tension force is computed on each surface element by (Tryggvason et al. [18]): 

  
where the integration is over the boundary curve of each element. The cross product is a vector that lies on 
the surface and is normal to the edge of the element. The product of the surface-tension and this vector 
gives the ‘pull’ on the edge and the net pull is obtained by integrating around the perimeter of the element. 
 

3. RESULTS 
 

a) Resolution tests 
 

To ensure grid independence of the solution, resolution tests were performed at three different grid 
resolutions with 321232 ×× , 642464 ××  and 12848128 ×× grid points. The size of the computational 
domain is 1375.01 ×× . The sensitivity of the results to mesh resolution is examined in Fig. 3, which shows 
the trajectory and axial velocity for a three dimensional drop at 10Re =d . The flow parameters are: 

1.0=Ca , 1== λα  and 125.0=ζ . The drop is initially released close to the upper wall )825.0/( =Hz . 
The difference between the results predicted using 642464 ××  and 12848128 ××  grids is much smaller 
than the difference between the results predicted using 321232 ××  and 642464 ××  grids. Therefore, the 
resolution converges with grid refinement, and grid-independent results are reached as the mesh is refined. 

The flow through the gap between the drop and the wall leads to a repulsive lubrication force called 
‘geometric blocking’ by Feng et al. [14], that pushes the drop away from the wall. The negative slip 
velocity and the curvature of the velocity profile generate a force that drives the drop away from the center 
of the channel. So, these two forces move the drop to an equilibrium position about halfway between the 
centerline and the wall. In Fig. 3, the equilibrium distance from the upper wall is nearly 26.0/ =Hzeq  for a 

642464 ××  grid. The simulation for a 642464 ××  grid took approximately 1800 min to reach 125=τ , 
using an AMD Opteron(tm) Dual-Core 2216 Processor under Visual Fortran 6.   

In Fig. 3, a comparison between the two- and three-dimensional simulations with the same parameters 
is also shown. The two-dimensional simulation was done on a 6464×  grid. The equilibrium position of the 
three-dimensional drop is close to that predicted by two-dimensional flow, but the three-dimensional drop 
has a higher axial velocity. This is due to the fact that we are considering a real drop in three-dimensional 
simulations, whereas in the two-dimensional case, the cylindrical sections are simulated. 

(8) 
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Fig. 3. Effect of resolution on the lateral migration of a drop in a plane Poiseuille flow. The lateral position and the 

axial velocity versus the axial location of a drop at three different grid resolutions. The two-dimensional 
 simulation was done on a  6464× grid. The flow parameters are:  

10Re =d , 1.0=Ca , 1== λα  and 125.0=ζ  
 

The streamlines for a three-dimensional drop are shown in Fig. 4 at the same time at two different 
grid resolutions with 642464 ××  or 12848128 ××  grid points after the drop reaches an equilibrium lateral 
position. The flow patterns are similar.  

 

         
(a)                                                                                      (b) 

 Fig. 4. Streamlines for a drop at 10Re =d , 1.0=Ca , 1== λα  and 125.0=ζ  at two different grid  
resolutions with (a) 642464 ××  and (b) 12848128 ××  grid points 

 
b) Lateral migration of a liquid drop in the small inertia limit 

 
The first study of the motion of a deformable drop in three-dimensional plane Poiseuille flow was 

carried out by a series of simulations in the limit of small inertia. Simulations were done with two low-
Reynolds numbers: 25.0Re =d  and 1Re =d .  

To investigate the dependence of the migration on the viscosity ratio, simulations were conducted at 
125.0=λ and 1=λ . The flow parameters are: 25.0=Ca , 1=α , 125.0=ζ  and 25.0Re =d . The 

calculations were done on a 643264 ××  grid. The lateral positions of the drops are plotted versus the axial 
location in Fig. 5. The drop with 125.0=λ  migrates towards the centerline, and the drop with 1=λ  
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migrates away from the centerline, which is in agreement with the theoretical predictions of Chan & Leal 
[21] and simulations of Mortazavi & Tryggvason [15] and Zhou & Pozrikidis [10]. This result does not 
agree with the simulations of Griggs et al. [8], Janssen & Anderson [9] and Doddi & Bagchi [20]. The 
results of Griggs et al. [8] do not agree with the perturbation theory of Chan & Leal [21], who showed that 
for values of λ between 0.5 and 10, the drop migrates to the walls, but for 5.0<λ  and 10>λ  moves to the 
centerline of the channel. However, Griggs et al. [8], Janssen & Anderson [9] and Doddi & Bagchi [20] 
observed that the drop always migrates to the centerline of the channel at any viscosity ratio. These results 
do not agree with the perturbation theory of Chan & Leal [21] and are questionable. 

 

 
Fig. 5. The lateral position of the drops versus the axial location at 25.0Re =d , 25.0=Ca . 

 The resolution is: 643264 ××  
 
Figure 6 shows the lateral position and the axial velocity of a drop versus the axial location at  

1Re =d  on a 643264 ××  grid. Two simulations were done with 1=Ca  and viscosity ratio of (a) 1=λ  and 
(b) 125.0=λ ; and one simulation was done with 2=Ca  and 125.0=λ (c). The initial positions of all 
drops are the same. The comparison between drops (a) and (b) shows that the low-viscosity drop (b) 
migrates towards the center of the channel, but the high-viscosity drop (a) migrates towards the wall. 
These results are again in agreement with the theory of Chan & Leal [21] for the viscosity dependence of 
the migration in the limit of small deformation.  

 

            
Fig. 6. Lateral position and axial velocity versus the axial position for several drops with  

1Re =d  and different viscosity ratios 
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The effect of deformation on the migration of the drop can be investigated by considering drops (b) 
and (c) in Fig. 6, which have different capillary numbers. More deformable drop (c) migrates faster to the 
center of the channel.  

Figure 6 shows the axial velocities of the drops versus the axial location. The comparison between 
drops (a) and (b) states that the axial velocity increases with decreasing viscosity ratio. This is due to the 
lower lateral position for the drop with lower viscosity. The result is in agreement with the simulations of 
Mortazavi & Tryggvason [15] for two-dimensional drops. In the present study, it is observed that as the 
equilibrium position moves closer to the center, the axial velocity increases, and the dimensionless axial 
velocity )/( cUu will be close to one. This result is not seen in the simulation of Griggs et al. [8], who 
showed that the drop velocity differs from the center velocity as the equilibrium position moves closer to 
the center. Their results do not follow the parabolic velocity profile logically. 

Figure 6 also shows that the drop with 2=Ca  moves slightly faster than the drop with 1=Ca , so the 
axial velocity is observed to be higher with an increasing capillary number. This is in agreement with 
Chan & Leal’s theory [21] and the simulations of Griggs et al. [8], Doddi & Bagchi [20] and Mortazavi & 
Trygvason [15]. 

Experimental investigations on a plane Hagen-Poiseuille flow of dilute suspensions of drops with 
different viscosity ratios by Hiller & Kowalewski [22] showed that for low-viscosity drops )1.0( =λ , the 
drop number density is highest at the centerline, but for moderate viscosity ratios )1( =λ , the highest 
concentration was located between the wall and the center. This is in agreement with the simulations 
presented here.     
 
c) Lateral migration of a liquid drop at moderate Reynolds numbers  

 
In this section, the motion of a liquid drop is studied at higher Reynolds numbers, and the effects of 

various governing parameters are examined. 
Figure 7 shows the lateral positions versus the axial location for a drop that is released at different 

initial positions. The flow parameters are: 10Re =d , 05.0=Ca , 1== λα  and 125.0=ζ . The 
calculations were done on a 643264 ××  grid. This result is compared with the simulation of Feng et al. 
[14] at Hz 165.0= and Hz 375.0=  in Fig. 7. The equilibrium position is similar to that of the two-
dimensional simulations of Feng et al. [14] and the difference can be attributed to the fact that these 
researchers studied the rigid sphere, while we studied the deformable particle. 

 

 
Fig. 7. Comparison of the simulated Segre-Silberberg effect with the simulation of Feng et al. [14]. The drop released 

at Hz 165.0= , Hz 375.0= , Hz 55.0= , Hz 6.0= , Hz 8.0= and 10Re =d in the present study and released at 
Hz 165.0= and Hz 375.0=  with 625.0Re =p , 40Re =b  in simulation of Feng et al. [14] 
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Drops that are initially close to the wall migrate towards the centerline, whereas drops that are 
initially close to the centerline migrate towards the wall. In the former case, the inward migration is due to 
the repelling effect of the wall, whereas in the latter case, the outward migration is due to the curvature in 
the mean velocity profile (Zhou & Pozrikidis [10]). So, all drops with different initial positions move to an 
equilibrium lateral position about halfway between the centerline and the wall according to the so-called 
Segre-Silberberg effect. The equilibrium distance from the upper wall is 25.0/ =Hzeq , which is close to 
that predicted by two-dimensional simulations of Feng et al. [14], which showed that the equilibrium 
position is 252.0/ =Hzeq  for a solid particle released in a plane Poiseuille flow.  

Experimental investigations of Segre & Silberberg [2], Oliver [23] and the theoretical prediction of 
Ho & Leal [6] have shown that a sphere is subject to a radial force which tends to carry it to a certain 
equilibrium position between the centerline and the wall, irrespective of the radial position at which the 
sphere is released.  

The drop gradually deforms while it migrates to the equilibrium position. Figure 8 shows computed 
shapes of the drops at various times for the transient migration of the drop at 7.0=Ca , 10Re =d  and 

1== λα . The drop is initially released at position Hz 8.0= with 125.0=ζ . It initially elongates and 
migrates away from the upper wall ( 625.0=τ ). The major axis of the drop is oriented at about o45 with 
respect to the channel wall. The drop then continues to deform more ( 975.0=τ ), reaching the maximum, 
and as the time passes it decreases ( 375.3=τ ). When the drop reaches the equilibrium position, it attains a 
stationary shape ( 25=τ , 40=τ ) and the viscous forces along the interface of the droplet due to the flow 
are balanced by the surface tension. This deformation will be described in section 3.c.1 at 7.0=Ca . These 
types of dynamic shapes for drops are observed for a wide range of Reynolds numbers, viscosity ratios 
and (subcritical) capillary numbers.    

 
125.0=τ                             625.0=τ                             975.0=τ  

              
 

                                  375.3=τ                              25=τ                                  40=τ                        

                         
 

Fig. 8. The evolution of a deformable drop initially placed at Hz 8.0= , with 10Re =d , 1== λα , 125.0=ζ  and 
7.0=Ca at various times 

 
1. Effect of the capillary number: For drops in Stokes flow, the drop migration is only due to 
deformation. A spherical particle does not migrate to any direction if it is released in a flow with zero 
Reynolds number, so there is no lateral force for such a particle. But a deformable drop always migrates 
away from the walls of a channel, as it is released at a position close to the channel walls. This migration 
is only due to deformation and is absent for a rigid spherical particle. If the flow is at finite Reynolds 
number, a drop migrates to an equilibrium position at about halfway between the centerline and the wall.      

The effect of deformation at higher Reynolds numbers is illustrated in Fig. 9. The streamlines at 
steady state are shown for drops with 1.0=Ca  and 7.0 . Other flow parameters are: 10Re =d , 1== λα  
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and 125.0=ζ . The calculations were done on a 643264 ××  grid. The flow patterns are similar, but as the 
capillary number is increased, the drops are more deformed and the streamlines are slightly different. 

 

              
(a)                                                                                       (b)      

Fig. 9. Streamlines for a drop at 10Re =d ,  1== λα  and 125.0=ζ . The capillary 
 number is 0.1 for (a) and 0.7 for (b) 

 
The lateral position of the drop is plotted versus the axial location in Fig. 10a at 1.0=Ca , 3.0 , 

5.0 , 7.0 and 10Re =d . It is clear that the drop migrates faster towards the channel centre with increasing 
capillary number (The equilibrium distance from the upper wall is 28.0/ =Hzeq  for 5.0=Ca  ). Similar 
behaviors have been reported by Griggs et al. [8], Janssen & Anderson [9] and Doddi & Bagchi [20].   

The axial velocities of the drops are plotted versus the axial location in Fig. 10b. The axial velocity 
increases with increasing capillary number. There is a reduction in the axial velocity in the initial transient 
period and can be attributed to the onset of shape distortion. Following this initial period, the axial 
velocity increases, owing to the streamlined shape adopted by the drop. Griggs et al. [8] and Martinez & 
Udell [24] found that the component of the drop velocity parallel to the walls is an increasing function of 
capillary number. The slip velocities, defined as the axial velocity of the drop minus the undisturbed fluid 
velocity at the drop center, are plotted in Fig. 10c. With increasing the capillary number, the slip velocity 
decreases, which is consistent with the simulations of Mortazavi & Tryggvason [15].   

To describe the geometrical state of the drop, we consider the deformation 
parameter )/()( bLbLD +−=  where L and b are, respectively, the maximum and minimum drop 
dimensions [25]. The deformation of the drops is plotted versus time in Fig. 10d. The drops start 
deforming from a spherical shape, and then reach a steady state shape. In all cases, the drops migrate to an 
equilibrium lateral position about halfway between the centerline and the wall in agreement with the 
results of Coulliette & Pozrikidis [12]. The rate of deformation is significant during the initial transient 
period. It is clear from Fig. 10d that the drop deformation increases with increasing capillary number due 
to the increase in viscous stresses along the interface. Because the previous studies constitute the zero-
Reynolds-number motion of drops and bubbles, the deformation values of the drops cannot be compared 
with other efforts in this area. But these values are qualitatively in agreement with the observations by 
Griggs et al. [8], Janssen & Anderson [9] and Kang et al. [26]. Figure 11 shows the steady three-
dimensional drop shapes at 1.0=Ca , 3.0 , 5.0  and 7.0 at time 2.000122. When the capillary number is 
small, the drop maintains a nearly spherical shape. As the capillary number increases, the drop elongates. 
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The major axis of the drop is oriented at about o45 with respect to the channel wall. This result is 
consistent with that reported by Mortazavi & Tryggvason [15], Tsai & Miksis [27], Doddi & Bagchi [20]. 
Schleizer & Bonnecaze [28] also found that as the capillary number increases, the drop deforms more due 
to the increase in viscous stresses along the interface and, above the critical values of the capillary 
number, no steady shape exists. 

 

         

         
Fig. 10. (a)The lateral position, (b) axial velocity, (c) slip velocity versus the axial position and (d) drop deformation 

versus non-dimensional time at 10Re =d   

                 
                                    (a)                                     (b)                                  (c)                                 (d) 

Fig. 11. The steady-state shapes of  deformable drops at 10Re =d , 1== λα  and 125.0=ζ , (a) 1.0=Ca , (b) 
3.0=Ca ,(c) 5.0=Ca  and (d) 7.0=Ca  

 
In Fig. 12a, the lateral position of the drop is plotted versus time at 2.0=Ca , 4.0 and 8.0  at 10Re =d . 

It is clear that the drop migrates faster towards the channel centre with increasing capillary number. The 
lateral velocity of the drop is plotted versus time in Fig. 12b. The drop migrates to a lower equilibrium 
position with higher capillary number, therefore, its lateral velocity becomes larger. When the drop 
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reaches an equilibrium lateral position about halfway between the centerline and the wall, the lateral 
velocity becomes zero.  

 

                           
Fig. 12. (a) The lateral position and (b) lateral velocity versus non-dimensional  

time at three different capillary numbers                                                                        
 

Figure 13 depicts drop shapes at 8.0=Ca  at various times. The flow conditions are: 10Re =d , 
1== λα  and 125.0=ζ . The drop initially elongates in the direction of the flow and migrates away from 

the upper wall ( 00075.1=τ , 125.3 ). In this period, the shear rate is high, and subsequently a tail is formed 
at intermediate stages, which can be due to the viscous stresses that act on the interface 
( 12525.6=τ , 2495.8 ). Afterwards, the tail disappears due to the smaller shear rate acting on the drop.  As 
the drop approaches the equilibrium position, the shear rate becomes small and the drop obtains a steady 
shape as shown at time 75.8=τ . 

 
00075.1=τ                                                           125.3=τ  

     
 

12525.6=τ                                                      2495.8=τ  

 
 

                                                                                                    75.8=τ                

 
Fig. 13. The evolution of a deformable drop initially placed at Hz 8.0= , with 10Re =d ,  

1== λα , 125.0=ζ  and 8.0=Ca  taken at various times 
 
These computations show that at small values of capillary number, the drop deforms and attains a 

stationary shape. As capillary number is increases, the drop elongates. We find that steady-state drop 
shapes are obtained up to 1=Ca . Above this critical value of capillary number, the drop does not obtain a 
steady shape but instead, continuously deforms and eventually breaks up.  
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2. Effect of the Reynolds number: Figure 14a shows the lateral position of the drop versus the axial 
location for Reynolds numbers 5.2Re =d , 5 , 10  and 15  at 3.0=Ca , 1== λα  and 125.0=ζ . The grid 
resolution is 643264 ×× . The drop moves to an equilibrium lateral position about halfway between the 
centerline and the wall according to the so-called Segre-Silberberg effect. As the Reynolds number 
increases, the equilibrium position moves slightly closer to the wall. The results are in agreement with 
those reported by Schonberg & Hinch [29], Yang et al. [30], Asmolov [31], Mortazavi & Tryggvason [15] 
and Segre & Silberberg [2]. The axial and slip velocities of the drops versus the axial location are shown 
in Fig. 14b,c. As the Reynolds number increases, the axial velocities decrease, but the slip velocities 
increase in agreement with the results of Yang et al. [30]. Figure 14d shows a slight increase of the drop 
deformation with increasing Reynolds number, however, the drop deformation is nearly the same at steady 
state equilibrium position.  
 

                         
   

                       
Fig. 14. (a) The lateral position, (b) axial velocity, (c) slip velocity versus the axial position and  
           (d) drop deformation versus non-dimensional time at four different Reynolds numbers 

 
3. Effect of the viscosity ratio: The lateral migration of a drop is affected by the ratio of the viscosity of 
the drop fluid to that of the suspending medium. In this section, calculations have been performed to study 
drop migration at different viscosity ratios for a small deformation )05.0( =Ca and moderate Reynolds 
numbers )10(Re =d . The grid resolution is 643264 ××  in the x-, y- and z-directions, respectively.  

In Fig. 15a, the lateral position of the drop is plotted versus its axial location for three viscosity 
ratios 2( =λ , 6  and 10 ). It is observed that the drop migrates nearly monotonically to the equilibrium 
position according to the Segre-Silberberg effect. The equilibrium position of low-viscosity drop is 
slightly closer to the wall than that of the more viscous drop, which is consistent with the Mortazavi & 
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Tryggvason’s simulations [15]. In Fig. 15b, the axial velocity of the drop is shown versus its axial 
location. As the viscosity ratio increases, so does the axial velocity. This is due to a lower equilibrium 
position for the drop with higher viscosity. Our results differ from those of Doddi & Bagchi [20], Griggs 
et al. [8], Mortazavi & Tryggvason [15] and Martinez & Udell [24], who found that velocity decreases 
with increasingλ . This difference can be attributed to the fact that these researchers studied the creeping 
flow, while we studied flow at finite Reynolds numbers. The comparison between the results of section 
3.b and 3.c.3 shows that variation of the equilibrium position with viscosity ratios in creeping flow is 
completely different from flow at finite Reynolds numbers. The drop migrates to a lower equilibrium 
position with higher viscosity, therefore, its axial velocity becomes larger. Figure 15c shows the maximum 
drop elongation as a function of time. For the range of λ considered here, the deformation for steady drop 
shapes increases with increasing viscosity ratio, but the trends for the dynamic deformation are not as 
simple. This increase is very little (less than 0.005), because the drop size and capillary number are small. 
In all cases, the drop initially elongates as it is deformed by the flow, and then relaxes towards a more 
compact steady shape. During the initial short-time elongation phase, the low-viscosity drop deforms the 
most rapidly (and reaches maximum elongation in the shortest time), because it offers less viscous 
resistance to dynamic deformation. In contrast, after the relaxation phase, high-viscosity drop reaches the 
greatest deformation. Since, in general, the rate of lateral migration increases with increasing deformation, 
the low-viscosity drop moves most rapidly towards the channel centerline during the initial phase, but 
higher-viscosity drop may migrate more rapidly towards the centerline during the latter phase. Similar 
behavior was observed by Griggs et al. [8], Martinez & Udell [24], Schleizer & Bonnecaze [28] and 
Janssen &Anderson [9] for Stokes flow.  

 

             
 

 
Fig. 15. (a) The lateral position, (b) axial velocity versus the axial position and (c) drop 

            deformation versus non-dimensional time at three different viscosity ratios 
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4. Effect of the drop size: In Fig. 16a, the lateral position of the drop is plotted versus the axial position 
for three drops with different sizes. The flow conditions are: 10Re =d , 05.0=Ca , 1== λα  and 

09.0=ζ , 1875.0 , 25.0 . The drop is initially released at Hz 55.0= . The size of the computational domain 
is 16875.01 ××  and the grid resolution is 644464 ××  in the x-, y- and z-directions, respectively. With 
increasing the radius of the drop, the centroid of the drop moves away from the wall. This is due to the 
fact that a larger lubrication force results for the larger drop. This force moves the drop further away from 
the wall. Similar phenomenon was observed by Mortazavi & Tryggvason [15], Yang et al. [30] and Karnis 
et al. [4]. Figure 16b depicts the axial velocity of a drop as a function of axial position for three drops with 
different sizes. The axial velocity decreases with increasing the size of the drop, which is consistent with 
the findings of Martinez & Udell [24] and Griggs et al. [8]. The deformation of three drops is shown in 
Fig. 16c as a function of time. The degree of deformation increases with increasing the radius of the drop. 
As the area of the drop increases, the effect of the upper plate becomes increasingly more important 
because more fluid is pushed through a smaller gap, requiring a greater local pressure gradient and 
increasing deformation. Schelizer & Bonnecaze [28], Doddi & Bagchi [20] and Martinez & Udell [24] 
showed that as the size of the droplet increases, the deformation of the drop increases as well.  
 

             
 
 

 
Fig. 16. (a) The lateral position, (b) axial velocity versus the axial position and (c) drop deformation versus non-

dimensional time at three different drop sizes at 10Re =d , 05.0=Ca , 1== λα  
 

4. CONCLUSION 
 

In the present study, finite difference/front tracking method has been used for simulation of the motion of 
a neutrally buoyant drop between two parallel plates in plane Poiseuille flow.   
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For validation of the model, the simulation was done at two low-Reynolds numbers, i.e., 25.0Re =d  
and 1Re =d . The results were compared with those reached by Mortazavi & Tryggvason [15], who 
simulated the two-dimensional deformable drops. The results showed that the drop with 125.0=λ  
migrates towards the centerline and the drop with 1=λ  migrates away from the centerline. So, at low-
Reynolds numbers, the motion of a drop depends on the ratio of the drop viscosity to the viscosity of the 
suspending fluid. A drop with a small viscosity moves towards the centerline, but a drop with viscosity 
comparable to the suspending fluid moves to the wall. This effect was also observed in the Stokes flow 
simulations of Zhou & Pozrikidis [10].  

In section 3.c, the motion of a liquid drop was studied at higher Reynolds numbers, and the effects of 
various governing parameters were examined. Simulation of drops with different initial positions showed 
that the drop that is initially close to the wall migrates towards the centerline, whereas the drop that is 
initially close to the centerline migrates towards the wall. Therefore, all drops with different initial 
positions move to an equilibrium lateral position about halfway between the centerline and the wall 
according to the so-called Segre-Silberberg effect. Drops with different capillary numbers were also 
examined. Increasing the capillary number moves the equilibrium position closer to the centerline. The 
axial velocity and the drop deformation increase with increasing the capillary number, which is consistent 
with the results of Mortazavi & Tryggvason [15] and Tsai & Miksis [27]. In this study, we found that 
steady-state drop shapes are obtained up to 1=Ca . Above this critical value of capillary number, the drop 
does not obtain a steady shape but instead, elongates with no limit and eventually breaks up. As the 
Reynolds number increases, the equilibrium position moves slightly closer to the wall, which is in 
agreement with the theory of Schonberg & Hinch [29] and the axial velocities decrease, whereas the slip 
velocities increase. With increasing Reynolds number, the drop deformation increases slightly. Increasing 
the viscosity ratio moves the equilibrium position slightly closer to the centerline and increases the axial 
velocity. The degree of deformation for steady drop shapes increases with increasing viscosity ratio, but 
the trends for the dynamic deformation are not as simple. With increasing the radius of the drop, the 
centroid of the drop moves away from the wall and the axial velocity decreases, but the degree of 
deformation increases.  

The equilibrium position of the three-dimensional drop is close to that predicted by two-dimensional 
simulations. Deformation, streamlines and the variation of the equilibrium position of the three-
dimensional drop with capillary number, Reynolds number, viscosity ratio and drop size agree 
qualitatively with two-dimensional simulations of Mortazavi & Tryggvason [15]. But the translational 
velocities do not agree quantitatively with two-dimensional simulations. This is due to the fact that we are 
considering a real drop in three-dimensional simulations, whereas in the two-dimensional case, the 
cylindrical sections are simulated.   
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