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Abstract– This paper focuses on the development of an efficient distributed collaborative 
optimization method for the design of remote sensing small satellite mission in low earth orbit 
(LEO). The satellite mission requirement involves the duration in which the satellite is able to take 
images, send data to the ground station and the amount of information it can store. Conventionally, 
all at once methods are used in satellite mission analysis, however, design optimization of such 
systems are multidisciplinary task with multiple conflicting objectives such as cost, performance 
and reliability. The approach adopted in this paper is based on a distributed collaborative 
optimization (CO) framework. In this approach, the design optimization problem is divided into 
two levels; namely system and discipline levels. The discipline level optimization involves 
payload, power, mission and launch subsystems. The objective function of the system level is to 
minimize the resolution of the satellite imaging payload subject to equality constraints. The use of 
equality constraints at the system level in CO to represent the disciplinary feasible regions 
introduces numerical and computational difficulties, as the discipline level optima are non-smooth 
and noisy functions of the system level optimization parameters. As a result of these difficulties, 
derivative-based optimization techniques cannot be used for the system level optimization. To 
address these difficulties a robust optimization algorithm, genetic algorithms (GA), are used at the 
system level, whilst at the discipline level efficient gradient based techniques are utilized. The 
results show that distributed CO framework using GA has the same level of accuracy as with the 
conventional all at once approaches, while providing a potential approach for solving complex 
multidisciplinary design problems such as the design of satellite systems.           

 
Keywords– Multidisciplinary design optimization, collaborative optimization, satellite mission, genetic algorithms, 
imaging payload  
 

1. INTRODUCTION 
 

The design of space systems is a multidisciplinary process with multiple and often conflicting objectives 
such as cost, performance and reliability. This, combined with the increasing demands of economic 
competition and the complexity of space systems has led to the rapid growth of the multidisciplinary 
design optimization (MDO) over the past two decades [1]. The design of such complex systems has 
traditionally involved a conceptual design phase, a preliminary design phase and a detailed design phase. 
For example, in the design of satellite, the most important and crucial decisions in a space mission life-
cycle are made during the conceptual design phase. This initial design phase offers the best opportunity to 
make radical changes, preventing potential failures and anomalies before proceeding to detailed design 
phase and verification of the satellite design [2]. The conventional sequential approach to such complex 
satellite system design involves a large number of iterations, which it does not guarantee to achieve the 
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best compromise and may even lead to non-optimal design. In the past few years, several research works 
have focused on the use of the conventional optimization techniques to the conceptual design of satellite. 
For example, Byoungsoo [3] used meta-heuristic algorithms to minimize the space system cost based on 
the technology choice at conceptual design phase, while Hassan [4] applied multiobjective optimization 
design using genetic algorithm (GA) for conceptual design of spacecraft systems. Similarly, Magnin [5] 
has presented a method for performing multiobjective optimization under uncertainty of satellite systems.  

Over the past two decades, there has been significant progress in the application of MDO for solving 
such complex design problems. Several MDO approaches have been proposed that include multiple 
discipline feasible (MDF) [6], all-at-once (AAO) and individual discipline feasible (IDF) [7], collaborative 
optimization [8], bi-level integrated synthesis (BLISS) [9], concurrent subspace optimization (CSSO) [10] 
and analytical target cascading (ATC) [11]. 

CO is designed in such a way that it supports disciplinary autonomy while maintaining 
interdisciplinary compatibility, thus providing added design flexibility. These features make CO well 
suited for use in a practical multidisciplinary design environment such as space systems. CO has also been 
widely used to solve various complex multidisciplinary design problems including launch vehicle design 
[12], aircraft design [13], undersea vehicle design [14] and ship design [15]. In spite of these advantages, 
however, the CO methodology has not become a main stream design optimization tool in industry due to 
the high computational costs involved (a feature common to all MDO approaches). In addition, an 
important difficulty specifically associated with CO is its slow system level optimization convergence 
rate. This relates to the fact that CO ensures interdisciplinary compatibility by means of system level 
equality constraints and attempts to minimize the disagreement between the disciplines by sending targets 
to individual disciplines that their optimization runs are required to meet. The discipline level optima can 
be non-smooth and noisy functions of the system level variables. This, combined with the use of equality 
constraints at the system level to represent disciplinary feasible regions introduces computational 
difficulties [16]. These features make it difficult to use derivative-based optimization techniques at the 
system level optimization in CO. To address these challenges the present paper focuses on the 
implementation of an efficient system level optimization algorithm for solving satellite design problems 
within a distributed CO framework that (i) retains compatibility with subsystem (discipline) constraints, 
(ii) provides higher convergence rate at the system level using GA  and exterior penalty method  at the 
system level optimization and (iii) reduces computational effort associated with discipline optimization 
runs by using gradient-based optimization algorithms at disciplinary optimization runs within a distributed 
CO framework. 
 

2. COLLABORATIVE OPTIMIZATION (CO) METHOD 
 

CO is a bi-level optimization framework [8] developed for large scale and distributed MDO problems. The 
key concept in CO is the decomposition of the design problem into two levels, namely discipline level and 
system level optimization as shown in Fig. 1. 

The transformation of the original coupled MDO problem into a CO framework is shown in Fig. 1. It 
can be seen that the problem is hierarchically decomposed along disciplinary analysis boundaries into N 
disciplinary optimization problems. The design variables and constraints of the original problem are 
partitioned as shown in Fig. 1. The system level optimizer is used to minimize the system level objective 
function (design objective function) while satisfying consistency requirements among the various 
disciplines by enforcing equality constraints at the system level (gi

*= 0, i=1,…,N). For example, Si  is a 
vector of subset of S, composed of all variables which affect discipline i. The system level variables are 
treated as fixed parameters in disciplinary optimization runs. Thus, the role of each disciplinary optimizer 
is to minimize, in a least squares sense, the discrepancy between the disciplinary design variables and 
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target values provided by the system level optimizer. The number of equality constraints N is related to the 
number of the disciplines. CO is posed in a hierarchical structure and, in comparison to a nonhierarchical 
system is advantageous because of its parallelization, lack of iteration requirements between disciplines 
and organizational characteristics. These features make CO well suited for use in a practical 
multidisciplinary design environment. However, due to complex interdisciplinary couplings, which are 
inherent in MDO problems, it results in a very high overall computational cost, limiting real-life 
applications of CO method. In addition, the equality constraints at the system level introduce some 
numerical features that hinder the direct application of gradient-based optimization algorithms at the 
system level within CO framework. To address these challenges, the remainder of this paper focuses on 
the implementation of a robust GA algorithm for solving optimization of remote sensing satellite mission 
using within distributed CO framework. 
 

*
1g *

2g *
Ng

   
3. TEST PROBLEM 

 
The satellite system design problem is divided into two levels namely, mission design block (MDB) and 
system design block (SDB) as shown in Fig. 2. The MDB block performs mission analysis and is a design 
based on mission and customer requirements. The SDB block is divided into various subsystems 
(disciplines) such as payload, electrical power supply (EPS), attitude determination and control system 
(ADCS), telemetry and tele-command (TT&C), thermal control system (TCS), structures, command and 
data handling (C&DH) as shown in Fig. 2. These disciplines are designed based on the analysis data 
provided by the MDB block and the design data interact with each other [17]. The design data 
communication between these disciplines and the MDB block is shown in Fig. 2. 

 
a) Subsystems design models of the test problem 

 
In this test problem, four subsystems including: mission analysis, payload, EPS and launcher 

capability are used to demonstrate the proposed methodology. The test problem deals with the 
minimization of the resolution of the satellite imaging payload, subject to design constraints as 
well as the side constraints on the design variables. The design data for this problem is shown in 
Table 1. For other disciplines weight characteristics are obtained from parametric correlations 
[18]. The subsystems design models and formulation of the test problem is described in sections 
below. 

 

Minimize: 
Subject to: 

Fig. 1. Collaborative optimization framework 
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Fig. 2. Elements of a typical satellite system design  
 

Table 1. Design data 
 

Design objective function 
Minimize resolution  ( R) 

Design constraints 

Notation Description Value Unit Minimum Maximum 
 Down link duration 5 15 min ܦܮܦ
* RT Revisit time 90 150 Day 
 sa Solar array area ≤ 1.2 ݉ଶܣ
ௌ்ܯ  Satellite mass ≤ 200 Kg 

Design variables 
  Lower bound Upper bound  

H Orbital altitude 500 750 Km 
D Camera aperture 50 150 mm 

Design parameters 
Subsystem Notation Description Value Unit 

Ground 
station ߳ Minimum elevation angle 5 deg 

Earth 
μ Earth gravitational parameter 3.986×105 ݎ݃ܭଷ ⁄ଶܿ݁ݏ  

Re Earth radius 6.378137×103 Km 
ω Angular velocity of Earth 7.27E-5 Rad/sec 

Payload 

n୮୧୶ୣ୪  Instrument number of pixel 2048 --- 

dpixel Instrument pixel size 10 µm 
  F# Optical parameter 8 --- 
 --- Constant parameter 1 or 2 ܭ
݉ Camera mass 8 Kg 
݀ Camera initial aperture 50 mm 

EPS 

Ω Mass density of batteries 35 w.h/Kg 
 --- Depth of discharge of batteries 0.25 ܦܱܦ

ܰ௧௧  Number of batteries 3 --- 
ݐ  Transition efficiency 0.09 --- 
ܵ  Mass per unit area of solar array 5 Kg/݉ଶ 
 ---  Power loss coefficient in eclipse time 0.6ݔ
 --- ௗ Power loss coefficient in day  time 0.8ݔ

(*RT is used as a constraint in the test problem and five different RT values ranging from 90 days 
(minimum value) and 150 days (maximum value) are used in five separate optimization runs and the 
results are shown in Tables 3 and 4). 
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Mission subsystem 
The mission subsystem performs mission analysis and design according to space mission requirements. In 
this test problem, the main mission requirement is the duration in which the satellite can be viewed from 
the ground station for transmitting data (down-link data transmission (DLD)). Thus, the mission discipline 
has two important roles; firstly, the duration in which the satellite is able to simultaneously take images 
and send data to the ground station and secondly, the amount of information it can store in the storage 
mode. DLD can be expressed as follows: 

 
ܦܮܦ = 	 ்

ଶగ
×  (1)                                                                       	ߣ2

ܶ = ට(Re + ு)3ߨ2

μ
                                                                        (2) 

ߣ = 	 గ
ଶ
− ቀ		߳ + sinିଵ ቀ ோ

ோାு
× cos ߳ቁቁ                                                 (3) 

 
where T is the satellite period and ߣ is the Earth central angle, respectively. 

 
Payload subsystem 
Payload subsystem design model is constrained by the mission specifications, which must take 
requirements from MDB as shown in Fig. 2. The payload of the test problem is designed to capture Earth 
images and therefore, the main objective is to minimize the resolution of the satellite imaging payload, 
which is constrained by the satellite revisit time (RT) and can be expressed as follows: 

 
ܴܶ = Re × ω × T

sw
                                                          (4) 

where sw is the swath width and can be expressed as: 
 

sw = ܪ2 × tan−1{	npixel × 1−݊ܽݐ ቀ dpixel

2000×F#×
ቁ	}                                    (5) 

ܯ = ܭ × ݉0 ×
ܦ

݀0
                                                         (6) 

where MPL is the satellite payload weight, and other notations used in equations (4) – (6) are described in 
Table 1. 

 
Electrical Power Supply (EPS) subsystem 
The EPS subsystem is responsible for generating, regulating and distributing all electrical power to other 
subsystems. The EPS subsystem design has a significant impact on determination of overall design 
specifications of a satellite system. For example, the dimensions of solar panels are directly related to the 
installation methods of solar cells, geometrical dimensions and weight of the satellite. The solar cell and 
battery are the two main elements to the EPS subsystem design. In the test problem, the required surface 
area for solar panels can be calculated as follows: 

 
saܣ = Psa

PEol
                                                                         (7) 

 

Psa = ܲ௩ ×
൬ೣ

ାషೣ
൰

்ି ்
                                                              (8) 

  
ܲ௩ = 21݁(.ெೄಲ)                                                       (9) 

 
ܶ = ܶ × sinିଵ ቀ ோ

ோାு
ቁ                                                          (10) 

 
where ܣsa is solar array area and other notations used in Eqs. (7)-(10) are described in Table 1. 
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Launcher subsystem 
The available launcher capabilities including; fairing accessible space, allowable weight and orbit altitude 
must be taken into consideration in the design of the satellite. In this test problem, the maximum allowable 
weight of the satellite with respect to the required orbital altitude can be calculated as follows:  

 
calculated satellite launch mass ( ౩౪) at altitude H

allowable satellite launch mass
≤	1                                       (11) 

Maximum	allowable launch mass=	750 −  (12)                                             ܪ
 

Therefore, as the maximum allowable launch mass decreases, the satellite orbital altitude (H) increases.  
 

b) Conventional Optimization Problem Formulation 
 

This section presents conventional optimization formulation and solution of the test problem 
described in Sections 3 and 3a. The objective function to be minimized is the resolution of the satellite 
imaging payload subject to mission, payload, launcher and power disciplinary constraints as well as the 
side constraints on the design variables. The design variables and constraints are shown in Table 2.  

 
Table 2. Design variables 

 
Upper limit Lower limit Unit Description (notation) 

150 50 mm Camera aperture (D),x1 
750 500 km Satellite orbital altitude(H),x2 

 
Minimize:     R	= dpixel×x2

F#×x1
                                                             (13) 

                                                               Subject to:              
              C1 =	ࡰࡸࡰ ≥                                                                    (14) 

C2 =	ࡰࡸࡰ ≤                                                                 (15) 
C3 =	ܴܶ ≤ 150                                                                  (16) 

C4 =	ܣsa ≤ 1.2                                                            (17) 
C5 =	

ܶܣܵܯ
allowable satellite launch mass ≤1                                     (18) 

 
where dpixel and F# are the instrument pixel size and optical parameter, respectively and C1(x) - C5(x) are 
inequality constraints involving mission, payload, power and launcher subsystems, respectively.  

Conventional (All-At-Once) optimization using a robust GA algorithm (population size of 30, 
crossover 0.9 and mutation rate of 0.06) was used to solve the above optimization problem. The objective 
function (minimization of the resolution of the satellite imaging payload) as well as the satellite weight, 
altitude and swath width are obtained by varying RT between 90 and 150 days as shown in Table 3. 

 
 

Table 3. Results of optimization (All-At-Once) using GA 

Revisit Time Limit(day) 90 100 110 130 150 
Satellite weight(Kg) 61.31 72.245 72.71 104.7 135.77 

Satellite dimension(m) 0.402 0.432 0.4393 0.528 0.6391 
Satellite altitude(km) 638.78 623.57 557.589 570.64 545.448 
Satellite swath(Km) 30.138 27.036 24.23 20.56 17.72 

Objective function: resolution 
(m) 

14.71 13.2 11.833 10 8.654 

Constraints: C1- C5 0 0 0 0 0 
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4. COLLABORATIVE OPTIMIZATION FORMULATION 
 

The test problem described in Sections 3 and 3a is now implemented within a distributed CO framework. 
The test problem is decomposed into four disciplines (mission, payload, power and launcher) and a system 
level optimizer to coordinate the overall optimization procedure. The organization of the optimization 
process and the main components of mission optimization of spacecraft within a CO framework are shown 
in Fig. 3 and are described in the sections below: 
 

 

 
 

 
 

 
 

 
 

 
 

 

Fig. 3. Collaborative optimization of the test problem 

a) System level optimization formulation 
 

The formulation of the system level can be expressed as shown below [18]: 
 

Minimize:		f(x) = dpixel  ×  s2

  F#×  s1
                                                      (19) 

  
Subject to: g1

*=0, g2
*=0, g3

*=0 and g4
*=0                                        (20) 

 
50 ≤ S1 ≤ 150 and 500 ≤ S2 ≤ 750                                               (21) 

 
The system level design variables s1 and s2 represent aperture of camera (D) and the orbital altitude (H), 
respectively. These are treated as system level target values (shared design variables) corresponding to 
discipline level design variables, ψ1 and ψ2, respectively. g1

* – g4
*are the system level equality 

compatibility constraints.  

b) Discipline level optimization formulation 
 

The discipline level optimization is free to satisfy its own constraints while minimizing its object 
functions, which is a discrepancy function and has to be minimized in a least square sense. The 
formulation of disciplinary optimization of mission, payload, power and launcher within the proposed CO 
are described below: 

 
Mission disciplinary design optimization formulation 
The discrepancy function to be minimized in the mission discipline is:  

 

݃ସ∗ ݃ଵ∗

݃ଶ∗ ݃ଷ∗ ݏଶ 
 ଶݏ

ଵݏ  ଶݏ,

 ଶݏ

System level 
Optimization 

Minimize  f (s) 
s.t.	݃∗(݅) = 0  i=1, 2, 3, 4 
D.V.: (s1, s2) 

Disciplinary optimizer 
Payload 

Min ݃ଶ = ଵݏ) − ଵ߰)ଶ +

ଶݏ) − ߰ଶ)ଶ 

s.t      ܿଷ(߰2,߰1) ≤ 0 

Disciplinary optimizer 
Power 

Min ݃ଷ = 2ݏ) −߰2)2 
s.t     ܿସ(߰2) ≤ 0 

Disciplinary optimizer 
Launcher 

Min ݃ସ = 2ݏ) −߰2)2 
s.t    ܿହ(߰ଶ) ≤ 0 

Disciplinary optimizer 
Mission 

Min ݃ଵ = 2ݏ) −߰2)2 

s.t    ଵܿ൫߰2൯ ≤ 0  , ܿଶ(߰2) ≤ 0 
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Minimize: g1 = (s2– ψ2)2                                                        (22) 
 

where s2 and ψ2 are the shared design variable (system level) and its local copy (discipline level), 
respectively. The constraints in mission discipline are: 

 
C1=ࡰࡸࡰ ≥                                                                 (23) 
C2=ࡰࡸࡰ ≤                                                               (24) 

 
In this disciplinary design optimization swath width is considered as the local design variable which is 
used to satisfy the constraints of the mission discipline. 

 
Payload disciplinary design optimization formulation 
The discrepancy function to be minimized in the payload discipline is:  

 
Minimize: g2 = (s1 – ψ1)2 + (s2 – ψ2)2                                                                    (25) 

 
where s1 and s2 are the shared design variable (system level), ψ1 and ψ2 are their local copies (discipline 
level) respectively. The constraint in payload discipline is: 

 
C3=ܴܶ ≤ ܥ,ܥ = {90 − 150}                                              (26) 

 
where RT is the revisit time of the  payload discipline.  

 
Power disciplinary design optimization formulation 
The discrepancy function to be minimized in the power discipline is:  

 
Minimize: g3 = (s2 – ψ2)2                                                                                    (27) 

 
where s2 and  ψ2 are the shared design variable (system level) and its local copy (discipline level) 
respectively. The constraint in power discipline is: 

 
C4=ܣsa ≤ 1.2                                                                (28) 

where Asa is the solar array area.  
 

Launcher disciplinary design optimization formulation 
The discrepancy function to be minimized in the launcher discipline is:  

 
Minimize: g4= (s2 – ψ2)2                                                                                           (29) 

 
where s2 and  ψ2 are the shared design variable (system level) and its local copy (discipline level), 
respectively. The constraint in launcher discipline is: 

 
C 5 =	

ܶܣܵܯ
allowable satellite launch mass≤1                                                  (30) 

 
where Msat is the satellite mass and allowable launch mass is obtained using launcher capability as 
described in section 3a. 

 
c) Optimization algorithms  

 
During the past decades genetic algorithms (GA) have received considerable attention and have 

experienced rapid development [19]. Their popularity lies in their ease of use and their ability to locate 
globally optimum designs. GA algorithms maintain large sets (populations) of potential solutions and 
apply re-combination operators on them to reach an optimum solution. Their ability to search an entire 
design space makes them more suitable for handling optimization problems with highly non-linear 
objective functions with many local optima. Moreover, they operate with coded sets of design variables as 
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opposed to the design variables themselves, and they are more suited to optimization problems with 
discrete design variables. The main disadvantage of GA algorithms is the high computational costs. In 
addition, variations of the GA algorithms such as hybrid genetic algorithm and particle swarm 
optimization algorithm [20] have been introduced. In this study, both GA and sequential quadratic 
programming (SQP) optimization algorithms are studied for the system and discipline levels optimization 
of the test problem within a distributed CO framework. As discussed earlier in the paper, the constraints at 
the system level are equality (discrepancy function gi

*=0, i=1, 2.., 4) and have a complex form as 
compared to constraints at the discipline levels.  Their values correspond to a measure of disagreement 
between the targets given to a discipline by the system level optimizer. As described earlier in the paper, 
these values (system level constraints) are non-smooth at the transition from a plateau of zero values to a 
region of non-zero values (for more detail, see reference [21]). Therefore, derivative-based optimization 
algorithms such as sequential quadratic programming (SQP) cannot be used at the system level. In order to 
overcome these difficulties, a more robust optimization algorithm GA is used in this work, whilst SQP is 
utilized at the disciplinary (mission, launcher, payload and power) optimization process.  GA operators 
used including selection, crossover and mutation as well as other parameters such as population size are 
tuned to enhance the convergence rate of the optimization. A population size of 30, crossover 0.9 and 
mutation rate of 0.06 were used together with the implementation of exterior penalty method to improve 
the convergence rate at the system level in the proposed CO framework.  

The sun synchronise orbit (SSO) is used and the allowable weight of the satellite is based on the 
orbital altitude where a launcher can position the satellite using the weight and altitude relationship as 
expressed in Eq. (11). In CO optimization process, the total weight of the satellite (payload, power, 
attitude control, structures, communication, harness, etc.) is used to compare with a specified range of 
weight limitation of the satellite as imposed by the launch vehicle during the optimization process. The 
optimization process is terminated based on the criteria that the difference of weight of the satellite 
between the previous and the current iteration must be less than 1 Kg.  All disciplinary constraints are 
satisfied and the results are shown in Table 4.  

 
Table 4. Results using the proposed CO framework 

System level  
Discipline level Design variable Constraints Objective 

function 
S1 S2 

g1
*- g4

* 

F(x) Launcher Mission Power Payload 
Satellite 
Altitude 

(Km) 

Camera 
aperture 

(cm) 

Satellite  
resolution (m) 

Satellite 
weight 
(Kg) 

Satellite 
periodic time 

(Sec) 

Satellite 
revisit time 
(RT) (day) 

Solar panel 
area (m2) 

Satellite 
swath (sw) 

(Km) 
656.38 5.55501 0 14.77 58.17 5871.68 90 0.392 30.25 
621.87 5.889813 0.44e-6 13.198 67.37 5828.53 100 0.42 27.025 
626.37 6.519798 0.11e-5 12.009 78.5 5834.15 110 0.446 24.59 
592.119 7.33765 0.4e-6 10.087 101.774 5791.41 130 0.5167 20.656 
576.2 8.269231 1e-7 8.71 136.28 5771.6 150 0.636 17.84 

 
5. RESULTS 

 
In the implementation of the proposed approach, RT is considered as a design constraint and five different 
values of the RT are evaluated in each optimization run as shown in the Table 4. The results (from Table 3 
and Table 4) show that the technical features and satellite mission fully satisfy the requirements of the 
satellite mission. As it was expected, with the increase in altitude, the RT has also been decreased (Fig. 4). 
Although it is desirable to reduce resolution, this will increase the size and consequently the weight of the 
satellite, which is constrained by the requirements of the satellite launch vehicle. Figure 5 shows variation 
of the size of the satellite solar panel area with respect to the resolution. 
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Fig. 5.  Resolution variations to satellite altitude and weight 

 
The variation of resolution with respect to the orbital altitude and weight of the satellite is shown in Fig. 5. 
The design space of the weight and resolution can be used as a decision making tool to help the designer 
make a balanced design decision among competing design objectives such as cost and performance.  
 

6. CONCLUSION 
 
This paper described distributed collaborative multidisciplinary optimization for remote sensing small 
satellite mission in LEO. In this approach, the design optimization problem of the satellite is divided into 
system and discipline levels. The disciplinary optimization involves subsystems such as payload, power, 
mission and launch. The overall design objective function was the minimization of the resolution of 
imaging payload of the satellite. Due to the peculiar characteristics of the equality constraints at the 
system level a robust GA algorithm is utilized at the system level, whereas at the discipline levels 
computationally efficient algorithm SQP is used. Several important design parameters and their inter-
relationships in the design of the satellite mission were also investigated, for example, variations of the 
solar panel area and weight with resolution of the satellite (Figs. 4-5). 

The results obtained show that distributed CO using the GA adopted in this paper has the same level 
of accuracy as with the conventional all at once approaches (Tables 3, 4), however, the proposed approach 
provides potential for solving complex multidisciplinary design problems such as the design of satellite 
systems where it would be difficult or very time consuming using conventional all at once approaches.  
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