THREE-DIMENSIONAL COMPUTATIONAL FLUID DYNAMIC STUDY ON PERFORMANCE OF POLYMER EXCHANGE MEMBRANE FUEL CELL (PEMFC) IN DIFFERENT CELL POTENTIAL

Editorial

10.22099/ijstm.2012.951

Abstract

 A full three-dimensional, single phase computational fluid dynamics model of a proton exchange  membrane  fuel  cell  (PEMFC)  with  both  the  gas  distribution  flow  channels  and  the Membrane Electrode Assembly (MEA) has been developed. A single set of conservation equations which are valid for the flow channels, gas-diffusion electrodes, catalyst layers, and the membrane region  are  developed  and  numerically  solved  using  a  finite  volume  based  computational  fluid dynamics technique. In this research, some important parameters such as variation of oxygen and water  mass  fraction,  liquid  water  activity  and  the  membrane  protonic  conductivity  have  been presented  at  the  entry  and  exit regions  of  the  cell. The numerical results  indicated  that,  at lower cell  voltage  (0.6v)  which  corresponds  to  higher  current  density,  the  hydrogen  and  oxygen consumption  and,  accordingly  water  production  is  high.  Finally  the  numerical  results  of  the proposed  CFD  model  are  compared  with  the  available  experimental  data  that  represent  good agreement.

Keywords