Diffraction of moving shock waves over stationary and moving bodies

Editorial

10.22099/ijstm.2013.986

Abstract

Propagation of shock waves over a cylinder, sphere and projectile are numerically simulated. Time dependent full Reynolds averaged Navier-Stokes equations are solved numerically with Roe’s scheme. For cylinder and sphere, the diffraction pattern, loci of triple points and shape of diffraction shocks are obtained and compared with experimental results. It is shown that good agreement is obtained, and Roe’s method is capable of predicting those flows. Interaction of a moving shock wave with flow around a SOCBT projectile is simulated numerically and flow features, pressure coefficient distribution on the projectile surfaces and the time histories of the drag force are obtained. Results show that as the moving shock wave passes through the projectile, the flow field and aerodynamic forces are changed dramatically. The time history of the drag force shows that it decreases and even becomes negative while shock wave passes the projectile.         
 

Keywords